수학 기본 실력 100% 충전

^{개념충전} ≫ 연산 훈련서

중등 **수학 1** (하)

정답 및 해설

V

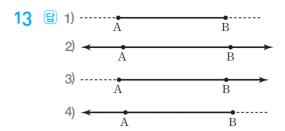
기본 도형

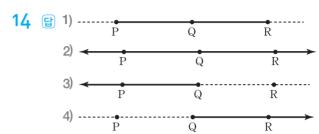
Ⅴ – 1 기본 도형

pp. 10~22

- 01 답 평면도형 한 평면 위에 있으므로 평면도형이다.
- 02 답 평면도형
- 03 답 입체도형 한 평면 위에 있지 않으므로 입체도형이다.
- 04 답 입체도형
- 05 달 입체도형
- **06 ⓑ** 1) ¬, ∟, □, ㅂ 2) ⊏, ≥
- 07 답 선, 면, 평면, 입체
- 08 달 1)점A 2)점F 3)모서리BC 4)모서리DH
 - 1) 모서리 AB와 모서리 AE는 점 A에서 만난다.
 - 2) 모서리 BF와 면 EFGH는 점 F에서 만난다.
 - 3) 면 ABCD와 면 BFGC는 모서리 BC에서 만난다.
 - 4) 면 AEHD와 면 CGHD는 모서리 DH에서 만난다.
- **09** 달 4

평면도형에서 교점의 개수는 꼭짓점의 개수와 같으므로 4개이다.

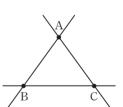

10 🖺 4,6


입체도형에서 교점의 개수는 꼭짓점의 개수와 같으므로 4개이고, 교선의 개수는 모서리의 개수와 같으므로 6개 이다.

11 🖹 6, 9

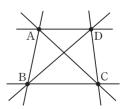
입체도형에서 교점의 개수는 꼭짓점의 개수와 같으므로 6개이고, 교선의 개수는 모서리의 개수와 같으므로 9개 이다.

12 답 선, 교점, 면, 교선, 꼭짓점, 모서리



- **15 ᠍ BA**
- **17 ▮ ⊼**C
- **18 ≅ AC**
- **19 □ CA**
- **20 달 AB**
- 21 🗄 ≠
- 22 답 =
- **23 달** ≠
- 24 달 =
- 25 달 =
- 26 달 ≠
- **27** 답 무수히 많다.

한 점을 지나는 직선은 무수히 많다.



В

30 **ⓑ** 67H ÁB, BC, CD, DA, ÁC, BD

의 6개이다.

- 31 目 1) 3개 2) 3개 3) 6개
 - 1) AB. BC. CA의 3개이다.
 - **2)** AB, BC, CA의 3개이다.
 - 3) AB, BA, BC, CB, CA, AC의 6개이다.
- **32** 달 AB, \overrightarrow{AB} , 반직선, \overrightarrow{AB} , 선분, \overrightarrow{AB}
- **33 ⑤** 8 cm (선분 AB의 길이)=8 cm
- **34 탑 7 cm** (선분 AC의 길이)=7 cm
- **35 탑** 6 cm (선분 AD의 길이)=6 cm
- **36 탑 10 cm** (선분 BC의 길이)=10 cm
- **37** 탑 8 cm (선분 AD의 길이)=8 cm
- **38** 달 9 cm (선분 BC의 길이)=9 cm
- **39 탑** 7 cm (선분 CD의 길이)=7 cm
- **40 달** 12 cm (선분 BD의 길이)=12 cm
- 41 답 짧은, 3
- **42 1** 1) 2 2) 4 3) $\frac{1}{4}$ 4) $\frac{1}{2}$
 - 1) 점 M은 \overline{AB} 의 중점이므로 \overline{AB} 의 길이는 \overline{AM} 의 길이의 2배이다.
 - 2) $\overline{AB} = 2\overline{AM} = 2 \times 2\overline{NM} = 4\overline{NM}$
 - 3) $\overline{AB} = 4\overline{NM} = 4\overline{AN}$ 이므로 $\overline{AN} = \frac{1}{4}\overline{AB}$
 - 4) $\overline{\mathrm{NM}} = \frac{1}{2}\overline{\mathrm{AM}}$ 이고 $\overline{\mathrm{AM}} = \overline{\mathrm{MB}}$ 이므로 $\overline{\mathrm{NM}} = \frac{1}{2}\overline{\mathrm{MB}}$

- $\frac{44}{\overline{MB}} = \frac{1}{2}\overline{AB} = \frac{1}{2} \times 8 = 4(cm)$
 - $\therefore \overline{MN} = \frac{1}{2} \overline{MB} = \frac{1}{2} \times 4 = 2(cm)$
- 45 \blacksquare 8 $\overline{AB} + \overline{BC} = 2\overline{MB} + 2\overline{BN} = 16 \text{ cm}$ $\therefore \overline{MN} = \overline{MB} + \overline{BN} = \frac{1}{2} \times 16 = 8 \text{ cm}$
- 46 답 중점
- **47 (a)** 1) ∠BAC, ∠CAB 2) ∠CBA, ∠ABD 3) ∠ACD, ∠DCA
- 48 달 1) 평각 2) 직각 3) 예각 4) 둔각
 1) ∠AOB의 크기는 180°이므로 평각이다.
 - 2) ∠AOC의 크기는 90°이므로 직각이다.3) 0°<∠COD<90°이므로 예각이다.
 - **4)** 90°<∠AOE<180°이므로 둔각이다.
- 50 답 1) ㄷ 2) ㄹ 3) ㄱ, ㅁ, ㅅ, ㅈ 4) ㄴ, ㅂ, ㅇ 3) 0°<(예각)<90°이므로 예각은 ㄱ, ㅁ, ㅅ, ㅈ이다. 4) 90°<(둔각)<180°이므로 둔각은 ㄴ, ㅂ, ㅇ이다.
- **51** 달 80° 40°+∠x+60°=180°이므로 ∠x=180°-100°=80°
- **52** 달 52° 38°+90°+∠x=180°이므로∠x=180°−128°=52°
- **54 ② 20**° $3 \angle x + 6 \angle x = 180^{\circ}$ $9 \angle x = 180^{\circ}$ $\therefore \angle x = 20^{\circ}$
- **55** 달 180°, 90°, 0°, 90°, 둔각

- **56 □** 1) ∠DOE 2) ∠FOA 3) ∠FOB 4) ∠DOB
 - AD와 BE가 만나서 생기는 각이므로 ∠AOB의 맞꼭 지각은 ∠DOE
 - 2) CF와 AD가 만나서 생기는 각이므로 ∠COD의 맞꼭 지각은 ∠FOA
 - **3)** CF와 BE가 만나서 생기는 각이므로 ∠COE의 맞꼭지 각은 ∠FOB
 - **4)** AD와 BE가 만나서 생기는 각이므로 ∠AOE의 맞꼭 지각은 ∠DOB
- **57** (a) 1) 60° 2) 90° 3) 30° 4) 120°
 - 1) $\angle BOC = \angle EOF = 60^{\circ}$
 - 2) $\angle DOE = \angle AOB = 90^{\circ}$
 - 3) $\angle COD = \angle FOA = 90^{\circ} 60^{\circ} = 30^{\circ}$
 - 4) $\angle COE = \angle FOB = 30^{\circ} + 90^{\circ} = 120^{\circ}$
- **58** 🖺 25°

 $\angle x + 40^{\circ} = 3 \angle x - 10^{\circ}$

 $2 \angle x = 50^{\circ}$ $\therefore \angle x = 25^{\circ}$

59 월 18°

 $6 \angle x + 34^{\circ} = 9 \angle x - 20^{\circ}$

 $3 \angle x = 54^{\circ}$ $\therefore \angle x = 18^{\circ}$

60 □ 125°

 $\angle x + 30^{\circ} + 25^{\circ} = 180^{\circ}$

 $\therefore \angle x = 125^{\circ}$

61 달 20°

 $(\angle x+10^{\circ})+(3\angle x+55^{\circ})+(2\angle x-5^{\circ})=180^{\circ}$

 $6 \angle x = 120^{\circ}$ $\therefore \angle x = 20^{\circ}$

 $\angle x = 90^{\circ} - 30^{\circ} = 60^{\circ}$

 $\angle y = 90^{\circ} + 60^{\circ} = 150^{\circ}$

 $\angle x = 180^{\circ} - 126^{\circ} = 54^{\circ}$

 $\angle y + 90^{\circ} = 126^{\circ}$ $\therefore \angle y = 36^{\circ}$

 $\angle x + 90^{\circ} + 40^{\circ} = 180^{\circ}$ $\therefore \angle x = 50^{\circ}$

 $\angle y = 90^{\circ} + 50^{\circ} = 140^{\circ}$

65 답 맞꼭지각, 같다

- **66 □** 1) ⊥ 2) ⊥ 3) ⊥ 4) ⊥
- 67 달 CD

두 직선이 서로 수직일 때, 한 직선을 다른 직선의 수선이 라고 하다

68 □ AD, **BC**

70 탑 점 D

71 답 점 A

72 답 점 B

73 달 점 C

74 🗄 4 cm

점 \overline{AP} \overline{DC} 사이의 거리는 \overline{AD} =4 cm

75 🖹 3 cm

점 B와 $\overline{\text{CD}}$ 사이의 거리는 $\overline{\text{BC}}$ =3 cm

76 ≅ 6 cm

점 \overline{AP} BC 사이의 거리는 $\overline{AB} = 6 \text{ cm}$

77 □ ⊥, H, CH

Ⅴ – 2 위치 관계

pp. 23~36

- 78 답 1) 점 A는 직선 m 위에 있다.
 - 2) 점 B는 직선 m 위에 있지 않다.
 - 3) 점 C는 직선 l 위에 있다.
 - 4) 점 D는 직선 l 위에 있다.
 - 5) 점 E는 직선 m 위에 있지 않다.
- 79 **(a)** 1) A A, A B, A C, A D
 2) A E, A F, A G, A H

80 🖹 A, B, D, C

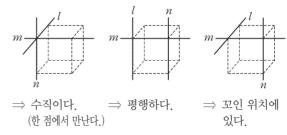
81 달 ○

변 AB와 변 CD의 연장선은 한 점에서 만난다.

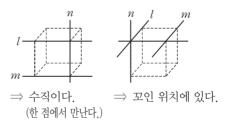
82 말 ○

변 BC와 변 EF의 연장선은 만나지 않는다. (평행하다.)

- **83** 탑 × 변 CD와 변 DE의 연장선은 한 점에서 만난다.
- **84** 탑 × 변 DE와 변 AF의 연장선은 한 점에서 만난다.
- 85 탑 × \overline{AB} 와 \overline{CD} 는 서로 평행하지 않다.
- 87 달 × \overline{AB} 와 \overline{BC} 는 한 점에서 만나지만 서로 수직은 아니다.
- 89 답 평행, 0, 일치
- 90 탑 모서리 **AC**, 모서리 **BC**, 모서리 **AD**, 모서리 **BE** 점 A, 점 B와 각각 한 점에서 만나는 모서리를 찾는다.
- 91 **달** 모서리 **AD**, 모서리 **CF**, 모서리 **DE**, 모서리 **EF** 점 D, 점 F와 각각 한 점에서 만나는 모서리를 찾는다.
- 92 달 모서리 AB, 모서리 BC, 모서리 DE, 모서리 EF 점 B, 점 E와 각각 한 점에서 만나는 모서리를 찾는다.
- 93 **탑** 모서리 **AC**, 모서리 **BC**, 모서리 **DF**, 모서리 **EF** 점 C, 점 F와 각각 한 점에서 만나는 모서리를 찾는다.
- 94 달 3개 모서리 CD, 모서리 GL, 모서리 IJ의 3개이다.
- 95 🖹 3개 모서리 BC, 모서리 EF, 모서리 KL의 3개이다.
- 96 달 3개 모서리 AB, 모서리 JK, 모서리 GH의 3개이다.
- 97 달 5개 모서리 CI, 모서리 BH, 모서리 AG, 모서리 FL, 모서리 EK의 5개이다.


98 🗑 모서리 DH, 모서리 CG, 모서리 FG, 모서리 EH, 모서리 GH

모서리 AB와 만나지도 않고 평행하지도 않은 모서리를 찾는다


- 99 답 모서리 AE, 모서리 DH, 모서리 EF, 모서리 GH
- 100 달 모서리 AB, 모서리 AD, 모서리 EF, 모서리 EH
- 101 달 모서리 AB, 모서리 BC, 모서리 EF, 모서리 FG
- 102 달 모서리 AB, 모서리 BC, 모서리 AD, 모서리 BF, 모서리 AE

104 달 ×

105 달 ×

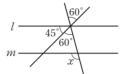
- 106 답 꼬인, 평행, 꼬인
- 107 달 면 ABCD, 면 ABFE
- 108 달 면 ABCD, 면 BFGC
- 109 🖹 면 BFGC, 면 CGHD
- 110 달 면 AEHD, 면 CGHD

- 111 달 면 ABFE, 면 DCGH
- 112 달 면 ABCD, 면 EFGH
- 113 달 모서리 AE, 모서리 BF, 모서리 CG, 모서리 DH
- 114 🖺 모서리 AB, 모서리 CD, 모서리 EF, 모서리 GH
- 115 달 면 CGHD, 면 EFGH
- 116 달 면 ABFE, 면 BFGC
- 117 달 모서리 BF, 모서리 FG, 모서리 CG, 모서리 BC
- 118 달 모서리 AB, 모서리 BC, 모서리 CD, 모서리 AD
- 119 달 면 ABC, 면 DEFG
- 120 달 면 ABED, 면 CFG
- **121** 달 모서리 **A**C, 모서리 **D**G, 모서리 **E**F
- 122 달 모서리 AB, 모서리 DE, 모서리 GF
- 123 달 포함, 평행, P, 수직, $l \perp P$
- 124 달 면 ABFE, 면 BFGC, 면 CGHD, 면 AEHD
- 125 달 면 CGHD
- 126 🖹 면 ABFE, 면 EFGH, 면 CGHD, 면 ABCD
- 127 달 면 BFGC
- 128 **달 GH**
- 129 🖹 면 ABC, 면 BEFC, 면 DEF, 면 ADFC
- 130 달 면 ABC, 면 DEF, 면 ADEB
- 131 달 면 DEF
- 132 **달 BE**
- 133 답 직선, 평행, 수직, $P \perp Q$

- **134** \boxminus 1) $\angle f$ 2) $\angle h$ 3) $\angle c$ 4) $\angle a$
- **135** 탑 **102°** ∠a의 동위각은 ∠d이므로 ∠d=180°-78°=102°
- 136 탑 80° ∠c의 동위각은 ∠f이므로 ∠f=180°-100°=80°
- **137 탑** 95° ∠d의 동위각은 ∠b이므로 ∠b=95°(맞꼭지각)
- 138 달 동위각, 4
- 139 \boxminus 1) $\angle h$ 2) $\angle e$
- **140** 월 1) 2) × 2) ∠c의 엇각은 ∠e, ∠i이다.
- **141** 달 75° ∠b의 엇각은 ∠d이므로 ∠d=180°-105°=75°
- **142** 달 110° ∠d의 엇각은 ∠a이므로 ∠a=180°-70°=110°
- **143** 답 125° ∠c의 엇각은 ∠e이므로 ∠e=125°(맞꼭지각)
- 144 답 엇각, 2
- **145 目 130°** l // m이므로 ∠x=130° (동위각)
- **146 탑 60°** l // m이므로 ∠x=60° (동위각)
- **147 目 105°** l // m이므로 ∠x=105°(동위각)
- **148 目 100°** l // m이므로 ∠x=100° (동위각)
- **149 탑 55°** l // m이므로 ∠x=55° (엇각)
- **150 탑 130°** l∥m이므로 ∠x=130°(엇각)

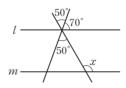
151 🖺 40°

*l // m*이므로 ∠*x*=40°(엇각)


152 달 70°

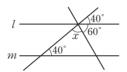
l / m이므로 $\angle x = 70^{\circ}$ (엇각)

153 월 105°


동위각의 크기는 같으므로

 $\angle x = 45^{\circ} + 60^{\circ} = 105^{\circ}$

154 달 120°


 $\angle x = 50^{\circ} + 70^{\circ} = 120^{\circ}$

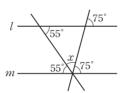
155 🖺 80°

 $\angle x + 60^{\circ} + 40^{\circ} = 180^{\circ}$

 $\therefore \angle x = 80^{\circ}$

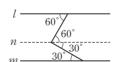
156 ₺ 55°

 $45^{\circ} + \angle x + 80^{\circ} = 180^{\circ}$

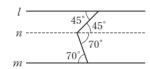

∴ ∠*x*=55°

157 달 50°

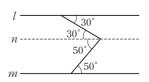
 $55^{\circ} + \angle x + 75^{\circ} = 180^{\circ}$


 $\therefore \angle x = 50^{\circ}$

158 달 90°

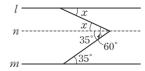

 $l /\!\!/ m /\!\!/ n$ 인 직선 n을 그으면

 $\angle x = 60^{\circ} + 30^{\circ} = 90^{\circ}$


159 🖹 115°

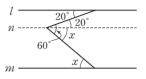
 $\angle x = 45^{\circ} + 70^{\circ} = 115^{\circ}$

160 **달** 80°


 $\angle x = 30^{\circ} + 50^{\circ} = 80^{\circ}$

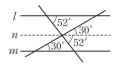
161 달 25°

 $\angle x + 35^{\circ} = 60^{\circ}$

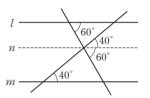

 $\therefore \angle x = 25^{\circ}$

162 답 40°

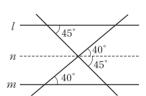
 $20^{\circ} + \angle x = 60^{\circ}$


 $\therefore \angle x = 40^{\circ}$

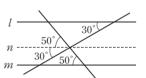
163 🖺 82°


 $l /\!\!/ m /\!\!/ n$ 인 직선 n을 그으면

 $\angle x = 30^{\circ} + 52^{\circ} = 82^{\circ}$

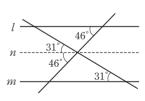

164 □ 100°

 $\angle x = 40^{\circ} + 60^{\circ} = 100^{\circ}$



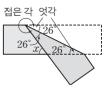
165 ≅ 85°

 $\angle x = 40^{\circ} + 45^{\circ} = 85^{\circ}$



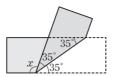
 $\angle x = 50^{\circ} + 30^{\circ} = 80^{\circ}$

167 달 77°


 $\angle x = 31^{\circ} + 46^{\circ} = 77^{\circ}$

168 달 52°

엇각의 크기는 같고, 접은 각의 크기도 같으므로


 $\angle x = 26^{\circ} + 26^{\circ} = 52^{\circ}$

169 🖹 110°

 $\angle x + 35^{\circ} + 35^{\circ} = 180^{\circ}$

 $\therefore \angle x = 110^{\circ}$

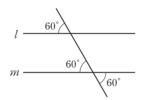
170 달 72°

 $\angle x + 54^{\circ} + 54^{\circ} = 180^{\circ}$

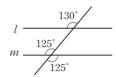
 $\therefore \angle x = 72^{\circ}$

171 답 엇각, 같다

172 달 ○


동위각의 크기가 같으므로 두 직선 l, m은 평행하다.

동위각의 크기가 같지 않으므로 두 직선 l, m은 평행하지 않다.


174 달 ○

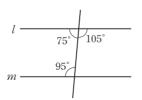
동위각의 크기가 같으므로 두 직선 *l. m*은 평행하다.

175 달 ×

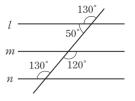
동위각의 크기가 같지 않으므로 두 직선 l, m은 평행하지 않다.

176 월 ○

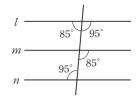
엇각의 크기가 같으므로 두 직선 l, m은 평행하다.


엇각의 크기가 같지 않으므로 두 직선 l, m은 평행하지 않다.

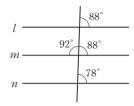
엇각의 크기가 같지 않으므로 두 직선 l, m은 평행하지 않다.



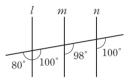
엇각의 크기가 같지 않으므로 두 직선 l, m은 평행하지 않다.


180 달 l과 n

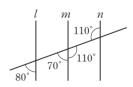
두 직선 l과 n은 동위각의 크기가 130° 로 같으므로 l / n이다.


181 답 *l*과 *n*

두 직선 l과 n은 엇각의 크기가 95° 로 같으므로 l / n이다.


182 달 l과 m

두 직선 l과 m은 동위각의 크기가 88°로 같으므로 l / m이다.


183 달 l과 n

두 직선 l과 n은 동위각의 크기가 100° 로 같으므로 l / n이다.

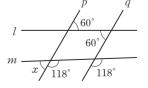
184 *탑 m과 n*

두 직선 m과 n은 엇각의 크기가 110°로 같으므로 m//n이다.

185 🖺 115°

엇각의 크기가 75°로 같으므로 $p /\!\!/ q$ $\therefore \angle x = 115$ ° (동위각)

186 **탑** 60°


엇각의 크기가 64° 로 같으므로 l //m

∴ ∠x=60° (엇각)

 $=62^{\circ}$

187 🖹 62°

엇각의 크기가 60° 로 같으 므로 $p /\!\!/ q$ $\therefore \angle x = 180^{\circ} - 118^{\circ}$

188 답 동위각, 평행

Ⅴ - 3 작도와 합동

pp. 37~45

- 189 달 ¬, ⊏
- 190 🖶 1) 2) × 3) ○

2) 작도를 할 때는 눈금 없는 자와 컴퍼스만을 사용한다.

- 191 답 해설 참조
 - ① 눈금 없는 자를 사용하여 직선을 긋고 그 위에 점 C 를 잡는다.
 - © 컴퍼스 를 사용하여 AB의 길이를 잰다.
 - © 점 C를 중심으로 하고 반지름의 길이가 \overline{AB} 인 원을 그려 직선과의 교점을 \overline{D} 라고 하면 선분 \overline{CD} 가 작도되다
- 192 답 자, 컴퍼스, 작도
- 193 \blacksquare 1) \bigcirc , \bigcirc , \bigcirc 2) \overline{OB} , \overline{PD} , \overline{CD} 3) $\angle DPC$
- 194 \boxdot 1) \circledcirc , \circlearrowright , \varTheta , \boxdot , \circledcirc 2) \overline{AC} , \overline{PR} , \overline{QR} 3) $\angle QPR$
- 195 달 각, ⓒ, ⓒ, ②, ②
- 196 (a) 1) 6 cm 2) 8 cm 3) 60° 4) 43° 5) 77°
 - **1)** ∠B의 대변은 AC이다.
 - 2) ∠C의 대변은 AB이다.
 - **3)** AB의 대각은 ∠C이다.
 - 4) AC의 대각은 ∠B이다.
 - 5) BC의 대각은 ∠A이므로 ∠A=180°-(43°+60°)=77°
- 197 달 ○

6<4+4이므로 삼각형을 만들 수 있다.

12>6+4이므로 삼각형을 만들 수 없다.

14=7+7이므로 삼각형을 만들 수 없다.

200 답 ○

5<3+4이므로 삼각형을 만들 수 있다.

- **201** \sqsubseteq $\angle B$, \overline{BC} , \overline{AB} , \overline{BC} , \overline{CA} , $\angle C$
- 202 탑 AC
- 203 🖹 BA, CA

- $204 \quad \Box \quad \overline{BC}, C, \overline{CA}$
- **205 달** 1) × 2) ○

1) ∠C는 AB, BC의 끼인각이 아니다.

- 206 달 변, 끼인각, 양 끝각
- 207 **말** ×

10>4+5이므로 삼각형이 그려지지 않는다.

208 **달** ×

세 각의 크기가 주어진 경우에는 모양은 같지만 크기가 다른 삼각형이 무수히 많이 그려진다.

 \angle A는 \overline{AB} , \overline{BC} 의 끼인각이 아니므로 삼각형이 하나로 정해지지 않는다.

210 답 ○

한 변의 길이와 그 양 끝각의 크기가 주어졌으므로 삼각 형이 하나로 정해진다.

- **211** 탑 AC의 길이
- **212** 달 ∠A의 크기 또는 ∠B의 크기
- **213** \blacksquare \overline{BC} , $\angle A$, $\angle C$
- 214 🖹 △ABC≡△HIG
- **215 □** △**ABC=**△**EFD**
- 216 달 (사각형 EFGH)≡(사각형 KLIJ)
- 217 달 1) 점 F 2) HE 3) ∠G 4) (사각형 ABCD)≡(사각형 EFGH)
 - 1) 점 A의 대응점은 점 E, 점 B의 대응점은 점 F, 점 C의 대응점은 점 G, 점 D의 대응점은 점 H이다.
- 218 답 1) 점 F 2) 40° 3) 110° 4) 5 cm 5) 9 cm
 - 2) ∠D의 대응각은 ∠A이다.
 - 3) ∠E의 대응각은 ∠B이다.
 - **4)** EF의 대응변은 BC이다.
 - 5) \overline{AC} 의 대응변은 \overline{DF} 이다.

219 1 1 6 cm 2 7 cm 3 80° 4 120° 5 70°

- 1) $\overline{\text{HE}}$ 의 대응변은 $\overline{\text{DA}}$ 이다.
- 2) \overline{BC} 의 대응변은 \overline{FG} 이다.
- 3) ∠E의 대응각은 ∠A이다.
- 4) ∠D의 대응각은 ∠H이다.
- 5) $\angle B = 360^{\circ} (80^{\circ} + 120^{\circ} + 90^{\circ}) = 70^{\circ}$

220 답 합동, ≡, 대응각, 같다

221 답 SSS 합동

대응하는 세 변의 길이가 각각 같다.

222 답 ASA 합동

대응하는 한 변의 길이가 같고 그 양 끝각의 크기가 각각 같다.

223 달 SAS 합동

대응하는 두 변의 길이가 각각 같고 그 끼인각의 크기가 같다.

224 달 1) ¬과ㅂ 2) ∟과ㅁ 3) ⊏과ㄹ

- 1) 대응하는 한 변의 길이가 같고 그 양 끝각의 크기가 각각 같으므로 ASA 합동이다.
- 2) 대응하는 두 변의 길이가 각각 같고 그 끼인각의 크기가 같으므로 SAS 합동이다.
- 3) 대응하는 한 변의 길이가 같고 그 양 끝각의 크기가 각각 같으므로 ASA 합동이다.

225 달 ○

대응하는 세 변의 길이가 각각 같으므로 SSS 합동이다.

226 目 0

대응하는 두 변의 길이가 각각 같고 그 끼인각의 크기가 같으므로 SAS 합동이다.

227 답 ○

대응하는 한 변의 길이가 같고 그 양 끝각의 크기가 각각 같으므로 ASA 합동이다.

228 日 〇

 $\angle A = \angle D$, $\angle B = \angle E$ 이므로 $\angle C = 180^\circ - (\angle A + \angle B) = 180^\circ - (\angle D + \angle E) = \angle F$ 따라서 대응하는 한 변의 길이가 같고 그 양 끝각의 크기가 각각 같으므로 ASA 합동이다.

229 🖶 ×

대응하는 두 변의 길이는 각각 같지만 그 끼인각이 같은 지 알 수 없으므로 \triangle ABC와 \triangle DEF는 합동이라고 할 수 없다.

230 **달** ×

대응하는 세 각의 크기가 각각 같으면 모양은 같지만 크기가 다를 수 있으므로 $\triangle ABC$ 와 $\triangle DEF$ 는 합동이라고 할 수 없다.

231 \Box 1) $\overline{AC} = \overline{DF}$ 2) $\angle B = \angle E \ \Xi \vdash \angle A = \angle D$

- 1) 대응하는 두 변의 길이가 각각 같고 그 끼인각의 크기 가 같아야 하므로 $\overline{AC} = \overline{DF}$ 의 조건이 있어야 한다.
- 2) 대응하는 한 변의 길이가 같고 그 양 끝각의 크기가 각각 같아야 하므로 $\angle B = \angle E$ 또는 $\angle A = \angle D$ 의 조건이 있어야 한다.

232 \blacksquare 1) $\overline{BC} = \overline{EF}$ 2) $\angle A = \angle D$

- 1) 대응하는 세 변의 길이가 각각 같아야 하므로 BC=EF의 조건이 있어야 한다.
- 2) 대응하는 두 변의 길이가 각각 같고 그 끼인각의 크기 가 같아야 하므로 $\angle A = \angle D$ 의 조건이 있어야 한다.

233 달 변, SAS, 끼인각, ASA, 양 끝각

단원 총정리 문제 V 기본 도형

pp. 46~47

01 ②	02 16 cm 03 ③	04 36°	05 ④
06 ⑤	07 ①, ② 08 ⑤	09 4	10 ①
11 75°	12 ④ 13 ②	14 ④	
15 (1) 4 (cm (2) 85° (3) 40	° 16.27°	

01 冒 ②

- ①, ④ 시작점과 방향이 모두 다르다.
- ③ 시작점이 다르다.
- ⑤ 직선 AB와 선분 AB는 다르다.

02 🖹 16 cm

점 M이 \overline{AB} 의 중점이므로 $\overline{AB} = 2\overline{MB}$ 점 N이 \overline{BC} 의 중점이므로 $\overline{BC} = 2\overline{BN}$: $\overline{AC} = \overline{AB} + \overline{BC} = 2\overline{MB} + 2\overline{BN}$

$$\therefore \overline{AC} = \overline{AB} + \overline{BC} = 2\overline{MB} + 2\overline{BN}$$

$$= 2(\overline{MB} + \overline{BN}) = 2\overline{MN}$$

$$= 2 \times 8 = 16(cm)$$

03 달 ③

③ 90°<∠COE<180°이므로 둔각이다.

04 🖺 36°

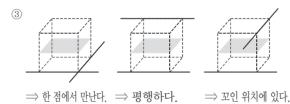
$$\angle x + \angle y + \angle z = 180^{\circ}$$
이므로 $\angle z = 180^{\circ} \times \frac{2}{3+5+2} = 180^{\circ} \times \frac{1}{5} = 36^{\circ}$

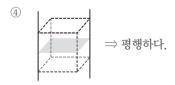
05 ▮ 4

맞꼭지각의 크기는 같으므로

$$5 \angle y - 10^{\circ} = 3 \angle y + 20^{\circ}$$

$$2 \angle y = 30^{\circ}$$
 $\therefore \angle y = 15^{\circ}$


$$\angle x = 180^{\circ} - 65^{\circ} = 115^{\circ}$$


 $\therefore \angle x + \angle y = 115^{\circ} + 15^{\circ} = 130^{\circ}$

06 ₺ ⑤

⑤ \overline{AC} 와 \overline{CD} 는 서로 직교하지 않으므로 \overline{CD} 는 \overline{AC} 의 수선이 아니다.

07 🖺 ①, ②

⑤ 꼬인 위치일 수도 있다.

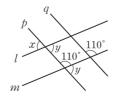
08 目 ⑤

모서리 DJ, 모서리 EK, 모서리 FL, 모서리 AG, 모서리 EF, 모서리 KL의 6개이다.

09 目 4

④ 면 ABC와 평행한 모서리는 모서리 DE, 모서리 EF, 모서리 DF의 3개이다.

10 目 ①


*⊅∥q*이므로

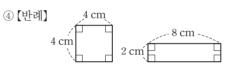
$$110^{\circ} + \angle y = 180^{\circ}$$

 $\therefore \angle y = 70^{\circ}$

 $l /\!\!/ m$ 이므로 $\angle x = \angle y = 70^\circ$

 $\therefore \angle x + \angle y = 70^{\circ} + 70^{\circ} = 140^{\circ}$

11 달 75°


12 답 ④

- ①, ②, ③ $\overline{AB} = \overline{AC} = \overline{PQ} = \overline{PR}$, $\overline{BC} = \overline{QR}$
- ④ $\overline{PQ} = \overline{QR}$ 인지는 알 수 없다.
- ⑤ 평행한 직선의 작도는 동위각의 크기가 같으면 두 직선 은 평행하다는 성질을 이용하여 크기가 같은 각의 작도 를 한 것이므로 ∠BAC=∠QPR

13 🖹 ②

② \angle B가 \overline{AB} 와 \overline{AC} 의 끼인각이 아니므로 삼각형이 하나로 정해지지 않는다.

14 🖺 4

15 (1) 4 cm (2) 85° (3) 40°

(1) \overline{EF} 의 대응변은 \overline{BC} 이므로 $\overline{EF} = \overline{BC} = 4 \text{ cm}$

(2) ∠A의 대응각은 ∠D이므로 ∠A=∠D=85°

(3) ∠E의 대응각은 ∠B이고 ∠B=180°-(85°+55°)=40°이므로 ∠E=∠B=40°

16 **달** 27°

 $\overline{OA} = \overline{OC}$, $\overline{AB} = \overline{CD}$ 이므로 $\overline{OB} = \overline{OA} + \overline{AB} = \overline{OC} + \overline{CD} = \overline{OD}$ 즉, $\triangle OBC$ 와 $\triangle ODA$ 에서 $\overline{OB} = \overline{OD}$, $\overline{OC} = \overline{OA}$ 이고 $\angle O$ 는 공통이므로 $\triangle OBC = \triangle ODA$ (SAS 합동) $\therefore \angle D = \angle B = 27^\circ$

VI 평

평면도형

Ⅵ -1 다각형

pp. 52~70

- **01** 달 × 선분이 아닌 곡선이 있다.
- **02** 🖺 O
- 03 월 ○
- **04** 달 × 평면도형이 아니다.
- **05 □** 1) **□** 2) **□** 3) **□** 4) **□**
- 06 달

다각형			
변의 개수(개)	3	5	7
꼭짓점의 개수 (개)	3	5	7
내각의 개수(개)	3	5	7
다각형의 이름	삼각형	오각형	칠각형

- **07 1** 1) 125° 2) 85° 3) 105° 4) 50° 5) 85°
- 08 답 내각: 110°, 외각: 70°
 ∠A의 내각의 크기가 110°이므로
 ∠A의 외각의 크기는 180°-110°=70°
- 내각: 40°, 외각: 140°
 ∠A의 외각의 크기가 140°이므로
 ∠A의 내각의 크기는 180°-140°=40°
- 10 달 내각: 130°, 외각: 50°
 ∠A의 내각의 크기가 130°이므로
 ∠A의 외각의 크기는 180°-130°=50°
- 11 답 내각: 90°, 외각: 90°∠A의 외각의 크기가 90°이므로∠A의 내각의 크기는 180°-90°=90°
- 12 달 3, 외각, 180°

- **13 ▮** ○
- 14 달 ×

네 변의 길이가 같고 네 내각의 크기가 같은 사각형을 정사각형이라고 한다.

- 15 월 ○
- 16 월 ○
- **17** 🖹 ×

정사각형을 제외한 정다각형의 한 내각의 크기와 한 외각 의 크기는 같지 않다.

18 달 ×

모든 내각의 크기가 같다고 해서 항상 정다각형인 것은 아니다.

- 19 달 5개
 - (i) 와 같은 정삼각형 : 4개
 - (ii) 외 같은 정삼각형 : 1개
 - (i), (ii)에서 정삼각형은 모두 4+1=5(개)이다.
- 20 답 정팔각형
- 21 달 변, 정다각형, 정사각형, 정오각형
- **22 量** 1개 4-3=1(개)
- 23 **□** 37**|** 6-3=3(7**|**)
- **24 ⓑ 5**개 8−3=5(개)
- **25 ■** 87**H** 11−3=8(7**H**)
- **26** 달 (n-3)개
- 27 달 오각형
 구하는 다각형을 n각형이라고 하면
 n-3=2에서 n=5
 따라서 오각형이다.

28 답 구각형

구하는 다각형을 n각형이라고 하면 n-3=6에서 n=9 따라서 구각형이다.

29 답 십각형

구하는 다각형을 n각형이라고 하면 n-3=7에서 n=10 따라서 십각형이다.

30 답 십육각형

구하는 다각형을 n각형이라고 하면 n-3=13에서 n=16 따라서 십육각형이다.

31 달 2개

$$\frac{4 \times (4-3)}{2} = 2(71)$$

32 달 9개

$$\frac{6 \times (6-3)}{2} = 9(7)$$

33 🖹 20개

$$\frac{8 \times (8 - 3)}{2} = 20(7)$$

34 🗄 14개

구하는 다각형을 n각형이라고 하면 n-3=4에서 n=7 따라서 칠각형의 대각선의 개수는 $\frac{7\times(7-3)}{2}=14(71)$

35 달 44개

구하는 다각형을 n각형이라고 하면 n-3=8에서 n=11 따라서 십일각형의 대각선의 개수는 $\frac{11\times(11-3)}{2}=44(71)$

36 달 오각형

구하는 다각형을 n각형이라고 하면 $\frac{n(n-3)}{2} = 5$ 에서 $n(n-3) = 10 = 5 \times 2 \qquad \therefore n = 5$

따라서 오각형이다.

37 답 구각형

구하는 다각형을 n각형이라고 하면 $\frac{n(n-3)}{2} = 27$ $n(n-3) = 54 = 9 \times 6 \qquad \therefore n = 9$ 따라서 구각형이다.

38 답 십각형

구하는 다각형을 n각형이라고 하면 $\frac{n(n-3)}{2} = 35$ $n(n-3) = 70 = 10 \times 7 \qquad \therefore n = 10$ 따라서 십각형이다.

39 답 십이각형

구하는 다각형을 n각형이라고 하면 $\frac{n(n-3)}{2} = 54$ $n(n-3) = 108 = 12 \times 9 \qquad \therefore n = 12$ 따라서 십이각형이다.

40 \Box n-3, n(n-3)

41 월 65°

삼각형의 세 내각의 크기의 합은 180° 이므로 $\angle x + 30^\circ + 85^\circ = 180^\circ$ $\therefore \angle x = 65^\circ$

42 달 131°

삼각형의 세 내각의 크기의 합은 180° 이므로 $\angle x + 17^{\circ} + 32^{\circ} = 180^{\circ}$ $\therefore \angle x = 131^{\circ}$

43 월 26°

삼각형의 세 내각의 크기의 합은 180° 이므로 $\angle x + 64^{\circ} + 90^{\circ} = 180^{\circ}$ $\therefore \angle x = 26^{\circ}$

44 달 23°

삼각형의 세 내각의 크기의 합은 180° 이므로 $3\angle x + 2\angle x + 65^\circ = 180^\circ$ $5\angle x = 115^\circ$ $\therefore \angle x = 23^\circ$

45 🖺 25°

삼각형의 세 내각의 크기의 합은 180° 이므로 $(\angle x+10^\circ)+3\angle x+70^\circ=180^\circ$ $4\angle x=100^\circ$ \therefore $\angle x=25^\circ$

46 ₺ 30°

삼각형의 세 내각의 크기의 합은 180° 이므로 $\angle x + 2 \angle x + 90^\circ = 180^\circ$ $3 \angle x = 90^\circ$ \therefore $\angle x = 30^\circ$

47 □ 75°

 $\angle ACB=40^{\circ}$ 이므로 $\angle x=180^{\circ}-(65^{\circ}+40^{\circ})=75^{\circ}$

48 달 36°

 $\triangle ABD$ 에서 $\angle BAD = 180^{\circ} - (36^{\circ} + 90^{\circ}) = 54^{\circ}$ 이므로 $\angle x = 90^{\circ} - 54^{\circ} = 36^{\circ}$

49 달 75°

 $\triangle ABC$ 에서 $\angle BAC = 180^{\circ} - (60^{\circ} + 30^{\circ}) = 90^{\circ}$ 이므로 $\angle BAD = \frac{1}{2} \angle BAC = \frac{1}{2} \times 90^{\circ} = 45^{\circ}$ 따라서 $\triangle ABD$ 에서 $\angle x = 180^{\circ} - (60^{\circ} + 45^{\circ}) = 75^{\circ}$

50 달 84°

 $\angle ACB = 180^{\circ} - 140^{\circ} = 40^{\circ}$ 이므로 $\triangle ABC$ 에서 $\angle BAC = 180^{\circ} - (52^{\circ} + 40^{\circ}) = 88^{\circ}$ $\therefore \angle BAD = \frac{1}{2} \angle BAC = \frac{1}{2} \times 88^{\circ} = 44^{\circ}$ 따라서 $\triangle ABD$ 에서 $\angle x = 180^{\circ} - (52^{\circ} + 44^{\circ}) = 84^{\circ}$

51 달 90°

세 내각의 크기를 각각 $\angle x$, $2\angle x$, $3\angle x$ 라고 하면 $\angle x+2\angle x+3\angle x=180^\circ$

 $6\angle x{=}180^\circ$ \therefore $\angle x{=}30^\circ$ 따라서 가장 큰 내각의 크기는 $3\times30^\circ{=}90^\circ$

[다른 풀이]

세 내각의 크기의 비가 1:2:3이므로 가장 큰 내각의 크 기는 $180^\circ \times \frac{3}{1+2+3} = 180^\circ \times \frac{1}{2} = 90^\circ$

52 🖹 80°

세 내각의 크기를 각각 $2\angle x$, $3\angle x$, $4\angle x$ 라고 하면 $2\angle x+3\angle x+4\angle x=180^\circ$ 9 $\angle x=180^\circ$ \therefore $\angle x=20^\circ$ 따라서 가장 큰 내각의 크기는 $4\times 20^\circ=80^\circ$

53 월 75°

세 내각의 크기를 각각 $3\angle x$, $4\angle x$, $5\angle x$ 라고 하면 $3\angle x + 4\angle x + 5\angle x = 180^\circ$ $2\angle x = 180^\circ$ $2\angle x = 15^\circ$ 따라서 가장 큰 내각의 크기는 $5\times 15^\circ = 75^\circ$

54 🖹 70°

세 내각의 크기를 각각 $5\angle x$, $6\angle x$, $7\angle x$ 라고 하면 $5\angle x+6\angle x+7\angle x=180^\circ$ $2x=180^\circ$ $2x=10^\circ$ 따라서 가장 큰 내각의 크기는 $7\times 10^\circ=70^\circ$

55 \boxminus 180°, 2 $\angle x$, 5 $\angle x$, 2 $\angle x$, 5 $\angle x$, 180°

56 □ 135°

삼각형의 한 외각의 크기는 그와 이웃하지 않는 두 내각의 크기의 합과 같으므로 $\angle x = 50^\circ + 85^\circ = 135^\circ$

57 🖺 134°

삼각형의 한 외각의 크기는 그와 이웃하지 않는 두 내각의 크기의 합과 같으므로 $\angle x=44^{\circ}+90^{\circ}=134^{\circ}$

58 🖹 70°

삼각형의 한 외각의 크기는 그와 이웃하지 않는 두 내각의 크기의 합과 같으므로

$$\angle x + 50^{\circ} = 120^{\circ}$$
 $\therefore \angle x = 70^{\circ}$

59 달 63°

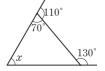
삼각형의 한 외각의 크기는 그와 이웃하지 않는 두 내각의 크기의 합과 같으므로

$$\angle x + 47^{\circ} = 110^{\circ}$$
 $\therefore \angle x = 63^{\circ}$

60 **달** 21°

삼각형의 한 외각의 크기는 그와 이웃하지 않는 두 내각의 크기의 합과 같으므로

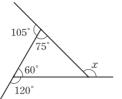
$$(2 \angle x + 23^{\circ}) + 45^{\circ} = 110^{\circ}$$
$$2 \angle x = 42^{\circ} \quad \therefore \angle x = 21^{\circ}$$


61 閏 18°

삼각형의 한 외각의 크기는 그와 이웃하지 않는 두 내각의 크기의 합과 같으므로 $(3 \angle x - 12^\circ) + 60^\circ = 5 \angle x + 12^\circ$

$$2 \angle x = 36^{\circ}$$
 $\therefore \angle x = 18^{\circ}$

62 달 60°


삼각형의 한 외각의 크기는 그와 이 웃하지 않는 두 내각의 크기의 합과 같으므로 오른쪽 그림에서

 $\angle x + 70^{\circ} = 130^{\circ}$ $\therefore \angle x = 60^{\circ}$

63 ▮ 135°

삼각형의 한 외각의 크기는 그 와 이웃하지 않는 두 내각의 크 기의 합과 같으므로 오른쪽 그 림에서

 $\angle x = 60^{\circ} + 75^{\circ} = 135^{\circ}$

△EAB에서 삼각형의 외각의 성질에 의해

 $\angle x + 35^{\circ} = 85^{\circ}$ $\therefore \angle x = 50^{\circ}$

△ECD에서 삼각형의 외각의 성질에 의해

 $\angle y + 30^{\circ} = 85^{\circ}$ $\therefore \angle y = 55^{\circ}$

65 \Box $\angle x = 90^{\circ}, \angle y = 20^{\circ}$

△EAB에서 삼각형의 외각의 성질에 의해

 $\angle x = 40^{\circ} + 50^{\circ} = 90^{\circ}$

△ECD에서 삼각형의 외각의 성질에 의해

 $70^{\circ} + \angle y = 90^{\circ}$ $\therefore \angle y = 20^{\circ}$

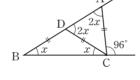
66 \Box $\angle x = 56^{\circ}$. $\angle y = 109^{\circ}$

△ECD에서 삼각형의 외각의 성질에 의해

 $\angle y = 41^{\circ} + 68^{\circ} = 109^{\circ}$

△EAB에서 삼각형의 외각의 성질에 의해

 $53^{\circ} + \angle x = 109^{\circ}$ $\therefore \angle x = 56^{\circ}$


67 🖺 32°

오른쪽 그림의 △DBC에서

 $\overline{\mathrm{DB}} = \overline{\mathrm{DC}}$ 이므로

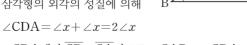
삼각형의 외각의 성질에 의해

 $\angle CDA = \angle x + \angle x = 2 \angle x$

 \triangle CDA에서 $\overline{\text{CD}} = \overline{\text{CA}}$ 이므로 \angle CAD $= \angle$ CDA $= 2 \angle x$

따라서 $\triangle ABC에서 \angle x + 2 \angle x = 96^{\circ}$

 $3 \angle x = 96^{\circ}$ $\therefore \angle x = 32^{\circ}$


68 ▮ 40°

오른쪽 그림의 △DBC에서

 $\overline{DB} = \overline{DC}$ 이므로

 $\angle DCB = \angle DBC = \angle x$

삼각형의 외각의 성질에 의해

 \triangle CDA에서 $\overline{\text{CD}} = \overline{\text{CA}}$ 이므로 \angle CAD $= \angle$ CDA $= 2 \angle x$

 $2 \angle x = 180^{\circ} - 100^{\circ} = 80^{\circ}$ $\therefore \angle x = 40^{\circ}$

69 🖺 25°

오른쪽 그림의 △DBE에서

 $\overline{DB} = \overline{DE}$ 이므로

 $\angle DEB = \angle DBE = \angle x$

삼각형의 외각의 성질에

의해

 $\angle EDA = \angle x + \angle x = 2 \angle x$

 $\triangle EDA에서 \overline{ED} = \overline{EA}$ 이므로

 $\angle EAD = \angle EDA = 2 \angle x$

△ABE에서 삼각형의 외각의 성질에 의해

 $\angle AEC = \angle x + 2 \angle x = 3 \angle x$

 $\triangle AEC에서 \overline{AE} = \overline{AC}$ 이므로

 $\angle ACE = \angle AEC = 3 \angle x$

△ABC에서 삼각형의 외각의 성질에 의해

 $\angle x + 3 \angle x = 100^{\circ}$

 $4 \angle x = 100^{\circ}$ $\therefore \angle x = 25^{\circ}$

70 달 100°

∠ABC=180°-(50°+70°)=60°이므로

 $\angle DBC = \frac{1}{2} \angle ABC = \frac{1}{2} \times 60^{\circ} = 30^{\circ}$

따라서 △BCD에서

 $\angle x = 70^{\circ} + 30^{\circ} = 100^{\circ}$

71 冒 145°

△ABD에서

 $65^{\circ} + \angle ABD = 105^{\circ}$ $\therefore \angle ABD = 40^{\circ}$

따라서 ∠DBC=∠ABD=40°이므로 △DBC에서

 $\angle x = 40^{\circ} + 105^{\circ} = 145^{\circ}$

72 🖺 85°

△ABC에서

 $\angle BAC + 70^{\circ} = 120^{\circ}$ $\therefore \angle BAC = 50^{\circ}$

따라서 $\angle BAD = \frac{1}{2} \angle BAC = \frac{1}{2} \times 50^{\circ} = 25^{\circ}$ 이므로

△ABD에서

 $\angle x = 180^{\circ} - (25^{\circ} + 70^{\circ}) = 85^{\circ}$

73 🖺 27°

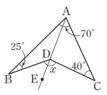
△ABC에서 2∠DCE=2∠DBC+54°이므로

 $2(\angle DCE - \angle DBC) = 54^{\circ}$ $\therefore \angle DCE - \angle DBC = 27^{\circ}$

따라서 $\triangle DBC$ 에서 $\angle DCE = \angle DBC + \angle x$

 $\therefore \angle x = \angle DCE - \angle DBC = 27^{\circ}$

74 ₺ 30°

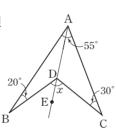

 $\triangle ABC$ 에서 $2\angle DCE = 2\angle DBC + 60^{\circ}$ 이므로 $2(\angle DCE - \angle DBC) = 60^{\circ}$ $\therefore \angle DCE - \angle DBC = 30^{\circ}$ 따라서 $\triangle DBC$ 에서 $\angle DCE = \angle DBC + \angle x$ $\therefore \angle x = \angle DCE - \angle DBC = 30^{\circ}$

75 ₺ 50°

 $\triangle ABC$ 에서 $2\angle DCE = 2\angle DBC + 100^\circ$ 이므로 $2(\angle DCE - \angle DBC) = 100^\circ$ $\therefore \angle DCE - \angle DBC = 50^\circ$ 따라서 $\triangle DBC$ 에서 $\angle DCE = \angle DBC + \angle x$ $\therefore \angle x = \angle DCE - \angle DBC = 50^\circ$

76 🖺 135°

오른쪽 그림과 같이 \overline{AD} 의 연장선 위에 점 E를 잡으면 $\angle BDE = 25^{\circ} + \angle BAD$ $\angle CDE = 40^{\circ} + \angle CAD$



 $\therefore \angle x = \angle BDE + \angle CDE$ $= 25^{\circ} + 40^{\circ} + (\angle BAD + \angle CAD)$ $= 25^{\circ} + 40^{\circ} + 70^{\circ} = 135^{\circ}$

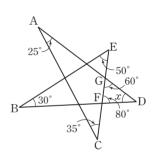
77 🖹 105°

오른쪽 그림과 같이 \overline{AD} 의 연장선 위에 점 E를 잡으면 $\angle BDE = 20^\circ + \angle BAD$ $\angle CDE = 30^\circ + \angle CAD$ $\therefore \angle x = \angle BDE + \angle CDE$ $= (20^\circ + \angle BAD)$ $+ (30^\circ + \angle CAD)$ $= 20^\circ + 30^\circ + (\angle BAD + \angle CAD)$

 $=20^{\circ}+30^{\circ}+55^{\circ}=105^{\circ}$

78 🖹 25°

오른쪽 그림과 같이 \overline{AD} 의 연장선 위에 점 E를 잡으면 $\angle BDE = 20^\circ + \angle BAD$ $\angle CDE = \angle x + \angle CAD$ $\angle BDC = \angle BDE + \angle CDE$ $= (20^\circ + \angle BAD) + (\angle x + \angle CAD)$ $= 20^\circ + \angle x + (\angle BAD + \angle CAD)$ $= 20^\circ + \angle x + 75^\circ = \angle x + 95^\circ$ 따라서 $\angle BDC = 120^\circ$ 이므로 $\angle x + 95^\circ = 120^\circ$ $\therefore \angle x = 25^\circ$


오른쪽 그림의 $\triangle ACG$ 에서 $\triangle DGF = \angle a + \angle c$ $\triangle BEF$ 에서 $\triangle DFG = \angle b + \angle e$ 따라서 $\triangle DFG$ 에서 $\triangle d + (\angle b + \angle e) + (\angle a + \angle e) = 180^\circ$ 이므로 $\triangle a + \angle b + \angle c + \angle d + \angle e = 180^\circ$

80 월 135°

오른쪽 그림의 $\triangle BDG$ 에서 $\angle AGF = \angle a + \angle c$ $\triangle CEF$ 에서 $\angle AFC = \angle b + \angle d$ 따라서 $\triangle AFG$ 에서 $(\angle a + \angle c) + (\angle b + \angle d) + 45^\circ = 180^\circ$ 이므로 $\angle a + \angle b + \angle c + \angle d = 135^\circ$

81 달 40°

 \triangle ACG에서 \angle DGF=25°+35°=60° \triangle BEF에서 \angle DFG=30°+50°=80° 따라서 \triangle DFG에서 $\angle x+60°+80°=180°$ $\therefore \angle x=40°$

82 달 내각, 합

83 ⓑ 2개 4−2=2(개)

84 ⓑ 47ℍ 6−2=4(7ℍ)

85 □ 7개 9−2=7(개)

86 달 11개 13-2=11(개)

87 ⓑ 360° 180° × (4−2) = 360°

88 目 720°

 $180^{\circ} \times (6-2) = 720^{\circ}$

89 달 1260°

 $180^{\circ} \times (9-2) = 1260^{\circ}$

90 달 1980°

 $180^{\circ} \times (13-2) = 1980^{\circ}$

91 달 100°

사각형의 내각의 크기의 합은 $180^{\circ} \times (4-2) = 360^{\circ}$ 이므로 $95^{\circ} + 100^{\circ} + \angle x + 65^{\circ} = 360^{\circ}$

- $\therefore \angle x = 100^{\circ}$
- **92** 🖹 83°

사각형의 내각의 크기의 합은 180°×(4-2)=360°이므로 98°+89°+90°+∠x=360°

- $\therefore \angle x = 83^{\circ}$
- **93 달** 125°

오각형의 내각의 크기의 합은 $180^{\circ} \times (5-2) = 540^{\circ}$ 이므로 $125^{\circ} + 85^{\circ} + \angle x + 110^{\circ} + 95^{\circ} = 540^{\circ}$

- $\therefore \angle x = 125^{\circ}$
- **94 달** 148°

칠각형의 내각의 크기의 합은 $180^{\circ} \times (7-2) = 900^{\circ}$ 이므로 $120^{\circ} + 119^{\circ} + \angle x + 133^{\circ} + 130^{\circ} + 140^{\circ} + 110^{\circ} = 900^{\circ}$

- $\therefore \angle x = 148^{\circ}$
- **95 달** 60°

사각형의 내각의 크기의 합은 $180^{\circ} \times (4-2) = 360^{\circ}$ 이므로 $\angle x + 2 \angle x + \angle x + 2 \angle x = 360^{\circ}$

- $6 \angle x = 360^{\circ}$ $\therefore \angle x = 60^{\circ}$
- **96 달** 120°

육각형의 내각의 크기의 합은 $180^\circ \times (6-2) = 720^\circ$ 이므로 $\angle x + \angle x = 720^\circ$

- $6 \angle x = 720^{\circ}$ $\therefore \angle x = 120^{\circ}$
- **97** 달 89°

사각형의 내각의 크기의 합은 $180^\circ \times (4-2) = 360^\circ$ 이므로 $75^\circ + 130^\circ + \angle x + (180^\circ - 114^\circ) = 360^\circ$

- ∴ ∠x=89°
- 98 **1** 75°

오각형의 내각의 크기의 합은 180°×(5-2)=540°이므로 (180°-50°)+95°+100°+110°+(180°-∠x)=540°

 $\therefore \angle x = 75^{\circ}$

99 달 70°

오른쪽 그림과 같이 보조선을 그으면

 $\angle a + \angle b = 180^{\circ} - \angle x \circ]$ 고

오각형의 내각의 크기의 합이

180°×(5-2)=540°이므로

 $70^{\circ} + 90^{\circ} + 100^{\circ} + 110^{\circ} + 60^{\circ} + \angle a + \angle b = 540^{\circ}$

 $70^{\circ} + 90^{\circ} + 100^{\circ} + 110^{\circ} + 60^{\circ} + (180^{\circ} - \angle x) = 540^{\circ}$

- $\therefore \angle x = 70^{\circ}$
- **100** 달 113°

오른쪽 그림과 같이 보조선을 그 으면 $\angle a + \angle b = 180^{\circ} - \angle x$ 이고

사각형의 내각의 크기의 합이

180°×(4-2)=360°이므로

 $47^{\circ} + 110^{\circ} + 100^{\circ} + 36^{\circ} + \angle a + \angle b = 360^{\circ}$

 $47^{\circ} + 110^{\circ} + 100^{\circ} + 36^{\circ} + (180^{\circ} - \angle x) = 360^{\circ}$

- $\therefore \angle x = 113^{\circ}$
- 101 탑 65°

오른쪽 그림과 같이 보조선을 그으

면 $\angle a + \angle b = 180^{\circ} - \angle x$ 이고

오각형의 내각의 크기의 합이

180°×(5-2)=540°이므로

 $40^{\circ} + 95^{\circ} + 120^{\circ} + 100^{\circ} + 70^{\circ} + \angle a + \angle b = 540^{\circ}$

 $40^{\circ} + 95^{\circ} + 120^{\circ} + 100^{\circ} + 70^{\circ} + (180^{\circ} - \angle x) = 540^{\circ}$

- ∴ ∠*x*=65°
- 102 달 25°

오른쪽 그림과 같이 보조선을 그으면 $\angle a + \angle b = 180^{\circ} - 100^{\circ} = 80^{\circ}$

삼각형의 내각의 크기의 합이 180°

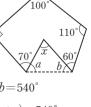
 $15^{\circ} + 60^{\circ} + \angle x + \angle a + \angle b = 180^{\circ}$

 $15^{\circ} + 60^{\circ} + \angle x + 80^{\circ} = 180^{\circ}$

- $\therefore \angle x = 25^{\circ}$
- 103 旨 540°

오른쪽 그림과 같이 보조선

을 그으면


 $\angle h + \angle i = \angle e + \angle d \circ | \Im$

오각형의 내각의 크기의

합이 180°×(5-2)=540°이므로

 $\angle a + \angle b + \angle c + \angle h + \angle i + \angle f + \angle g = 540^{\circ}$

 $\therefore \angle a + \angle b + \angle c + \angle d + \angle e + \angle f + \angle g = 540^{\circ}$

100

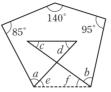
110°

√95°

100

60°

104 😫 360°


오른쪽 그림과 같이 보조선을 그으면 $\angle c + \angle d = \angle g + \angle h \circ] \Im$ 사각형의 내각의 크기의 합이 180°×(4-2)=360°이므로 $\angle a + \angle b + \angle g + \angle h + \angle e + \angle f = 360^{\circ}$

 $\therefore \angle a + \angle b + \angle c + \angle d + \angle e + \angle f = 360^{\circ}$

105 **달** 220°

오른쪽 그림과 같이 보조선을 그으면 $\angle c + \angle d = \angle e + \angle f$ 이 고 오각형의 내각의 크기의 합 이 180°×(5-2)=540°이므로

 $140^{\circ} + 85^{\circ} + \angle a + \angle e + \angle f + \angle b + 95^{\circ} = 540^{\circ}$ $\therefore \angle a + \angle b + \angle c + \angle d = 540^{\circ} - (140^{\circ} + 85^{\circ} + 95^{\circ})$ $=220^{\circ}$

106 \Box n-2, 180°, 2

107 달 105°

다각형의 외각의 크기의 합은 360°이므로 $\angle x + 130^{\circ} + 125^{\circ} = 360^{\circ}$ $\therefore \angle x = 105^{\circ}$

다각형의 외각의 크기의 합은 360°이므로 $\angle x + 81^{\circ} + 62^{\circ} + 120^{\circ} = 360^{\circ}$ $\therefore \angle x = 97^{\circ}$

109 🖹 74°

다각형의 외각의 크기의 합은 360°이므로 $51^{\circ} + 70^{\circ} + \angle x + 85^{\circ} + 80^{\circ} = 360^{\circ}$ $\therefore \angle x = 74^{\circ}$

110 달 100°

다각형의 외각의 크기의 합은 360°이므로 $(180^{\circ} - 40^{\circ}) + \angle x + 120^{\circ} = 360^{\circ}$ $\therefore \angle x = 100^{\circ}$

111 달 116°

다각형의 외각의 크기의 합은 360°이므로 $\angle x + (180^{\circ} - 126^{\circ}) + (180^{\circ} - 90^{\circ}) + 100^{\circ} = 360^{\circ}$ $\therefore \angle x = 116^{\circ}$

112 **달** 55°

다각형의 외각의 크기의 합은 360°이므로 $(180^{\circ}-110^{\circ})+(180^{\circ}-100^{\circ})+55^{\circ}+100^{\circ}+\angle x=360^{\circ}$ $\therefore \angle x = 55^{\circ}$

113 🖹 102°

다각형의 외각의 크기의 합은 360°이므로 $50^{\circ} + 72^{\circ} + (180^{\circ} - \angle x) + 85^{\circ} + (180^{\circ} - 105^{\circ}) = 360^{\circ}$ $\therefore \angle x = 102^{\circ}$

114 🖺 360°

115 🖹 108°

정오각형의 한 내각의 크기는

$$\frac{180^{\circ} \times (5-2)}{5} = \frac{540^{\circ}}{5} = 108^{\circ}$$

116 **🖹** 135°

$$\frac{180^{\circ} \times (8-2)}{8} = 135^{\circ}$$

$$\frac{180^{\circ} \times (9-2)}{9} = 140^{\circ}$$

$$\frac{180^{\circ} \times (12-2)}{12} = 150^{\circ}$$

119 답 정삼각형

구하는 정다각형을 정n각형이라고 하면 $180^{\circ} \times (n-2)$ = 60° 에서 $180^{\circ} \times n - 360^{\circ} = 60^{\circ} \times n$ $120^{\circ} \times n = 360^{\circ}$ $\therefore n = 3$

따라서 정삼각형이다.

120 답 정사각형

구하는 정다각형을 정n각형이라고 하면 $\frac{180^{\circ} \times (n-2)}{100^{\circ}} = 90^{\circ}, 180^{\circ} \times n - 360^{\circ} = 90^{\circ} \times n$ $90^{\circ} \times n = 360^{\circ}$ $\therefore n = 4$ 따라서 정사각형이다.

121 답 정육각형

구하는 정다각형을 정n각형이라고 하면 $180^{\circ} \times (n-2)$ = 120°, $180^{\circ} \times n - 360^{\circ} = 120^{\circ} \times n$ $60^{\circ} \times n = 360^{\circ}$ $\therefore n = 6$ 따라서 정육각형이다.

122 답 정십각형

구하는 정다각형을 정*n*각형이라고 하면

$$\frac{180^{\circ} \times (n-2)}{n} = 144^{\circ}, \ 180^{\circ} \times n - 360^{\circ} = 144^{\circ} \times n$$

$$36^{\circ} \times n = 360^{\circ}$$
 $\therefore n = 10$

따라서 정십각형이다.

123 🖹 72°

정다각형의 외각의 크기의 합은 항상 360°이므로 정오각형의 한 외각의 크기는

$$\frac{360^{\circ}}{5} = 72^{\circ}$$

124 답 45°

$$\frac{360^{\circ}}{8} = 45^{\circ}$$

125 ▮ 40°

$$\frac{360^{\circ}}{9} = 40^{\circ}$$

126 달 30°

$$\frac{360^{\circ}}{12} = 30^{\circ}$$

127 달 18°

$$\frac{360^{\circ}}{20} = 18^{\circ}$$

128 답 정사각형

구하는 정다각형을 정n각형이라고 하면

$$\frac{360^{\circ}}{n} = 90^{\circ} \qquad \therefore n = 4$$

따라서 정사각형이다.

129 답 정육각형

구하는 정다각형을 정n각형이라고 하면

$$\frac{360^{\circ}}{n}$$
 = 60° $\therefore n$ = 6

따라서 정육각형이다.

130 답 정십각형

구하는 정다각형을 정n각형이라고 하면

$$\frac{360^{\circ}}{n} = 36^{\circ} \qquad \therefore n = 10$$

따라서 정십각형이다.

131 답 정십오각형

구하는 정다각형을 정n각형이라고 하면

$$\frac{360^{\circ}}{n} = 24^{\circ} \qquad \therefore n = 15$$

따라서 정십오각형이다.

132 답 정십팔각형

구하는 정다각형을 정n각형이라고 하면

$$\frac{360^{\circ}}{n} = 20^{\circ} \qquad \therefore n = 18$$

따라서 정십팔각형이다.

133 답 120°, 정삼각형

한 내각의 크기가 60°이므로

(한 외각의 크기)=180°-60°=120°

구하는 정다각형을 정*n*각형이라고 하면

$$\frac{360^{\circ}}{n} = 120^{\circ} \qquad \therefore n = 3$$

따라서 정삼각형이다.

134 탑 72°, 정오각형

한 내각의 크기가 108°이므로

(한 외각의 크기)=180°-108°=72°

구하는 정다각형을 정n각형이라고 하면

$$\frac{360^{\circ}}{n} = 72^{\circ} \qquad \therefore n = 5$$

따라서 정오각형이다.

135 달 60°, 정육각형

한 내각의 크기가 120°이므로

(한 외각의 크기)=180°-120°=60°

구하는 정다각형을 정*n*각형이라고 하면

$$\frac{360^{\circ}}{n} = 60^{\circ} \qquad \therefore n = 6$$

따라서 정육각형이다.

136 🖺 45°, 정팔각형

한 내각의 크기가 135°이므로

(한 외각의 크기)=180°-135=45°

구하는 정다각형을 정n각형이라고 하면

$$\frac{360^{\circ}}{n} = 45^{\circ} \qquad \therefore n = 8$$

따라서 정팔각형이다.

137 답 36°, 정십각형

한 내각의 크기가 144°이므로 (한 외각의 크기)=180°-144°=36° 구하는 정다각형을 정n각형이라고 하면 $\frac{360^{\circ}}{n}$ = 36° $\therefore n$ = 10

$$\frac{360}{n} = 36^{\circ} \qquad \therefore n = 10$$

따라서 정십각형이다.

138 답 정사각형

한 내각과 한 외각의 크기의 합이 180°이므로 한 외각의 크기는 $180^{\circ} \times \frac{1}{1+1} = 90^{\circ}$

구하는 정다각형을 정n각형이라고 하면

$$\frac{360^{\circ}}{n} = 90^{\circ} \qquad \therefore n = 4$$

따라서 정사각형이다.

139 탑 정삼각형

한 외각의 크기는 $180^{\circ} \times \frac{2}{1+2} = 120^{\circ}$

구하는 정다각형을 정n각형이라고 하면

$$\frac{360^{\circ}}{n} = 120^{\circ} \qquad \therefore n = 3$$

따라서 정삼각형이다.

140 달 정육각형

한 외각의 크기는 $180^{\circ} \times \frac{1}{2+1} = 60^{\circ}$

구하는 정다각형을 정n각형이라고 하면

$$\frac{360^{\circ}}{n} = 60^{\circ} \qquad \therefore n = 6$$

따라서 정육각형이다.

141 답 정팔각형

한 외각의 크기는 $180^{\circ} \times \frac{1}{3+1} = 45^{\circ}$

구하는 정다각형을 정n각형이라고 하면

$$\frac{360^{\circ}}{n} = 45^{\circ} \qquad \therefore n = 8$$

따라서 정팔각형이다.

142 답 정오각형

한 외각의 크기는 $180^{\circ} \times \frac{2}{3+2} = 72^{\circ}$

구하는 정다각형을 정n각형이라고 하면

$$\frac{360^{\circ}}{n} = 72^{\circ} \qquad \therefore n = 5$$

따라서 정오각형이다.

143 🖹 60°, 120°

구하는 정다각형을 정n각형이라고 하면 내각의 크기의 합이 180°이므로

$$180^{\circ} \times (n-2) = 180^{\circ}$$
 $\therefore n=3$

따라서 정삼각형의 한 내각의 크기는 $\frac{180^{\circ}}{3}$ = 60° 이고,

한 외각의 크기는 $\frac{360^{\circ}}{3}$ =120°이다.

144 🖺 108°, 72°

구하는 정다각형을 정n각형이라고 하면 내각의 크기의 합이 540°이므로

$$180^{\circ} \times (n-2) = 540^{\circ}$$
 $\therefore n=5$

따라서 정오각형의 한 내각의 크기는 $\frac{540^{\circ}}{5}$ = 108° 이고,

한 외각의 크기는 $\frac{360^{\circ}}{5}$ =72°이다.

145 🔁 135°, 45°

구하는 정다각형을 정n각형이라고 하면 내각의 크기의 합이 180°이므로

$$180^{\circ} \times (n-2) = 1080^{\circ}$$
 $\therefore n=8$

따라서 정팔각형의 한 내각의 크기는 $\frac{1080^{\circ}}{8}$ =135°이고,

한 외각의 크기는 $\frac{360^{\circ}}{8}$ = 45° 이다.

146 🖹 140°, 40°

구하는 정다각형을 정*n*각형이라고 하면 내각의 크기의 합이 1260°이므로

$$180^{\circ} \times (n-2) = 1260^{\circ}$$
 : $n = 9$

따라서 정구각형의 한 내각의 크기는 $\frac{1260^{\circ}}{9}$ =140°이고,

한 외각의 크기는 $\frac{360^{\circ}}{9}$ = 40° 이다.

147 🖶 144°, 36°

구하는 정다각형을 정n각형이라고 하면 내각의 크기의 합이 1440°이므로

$$180^{\circ} \times (n-2) = 1440^{\circ}$$
 : $n = 10$

따라서 정십각형의 한 내각의 크기는 $\frac{1440^{\circ}}{10}$ = 144° 이고,

한 외각의 크기는 $\frac{360^{\circ}}{10}$ =36°이다.

148 달 140°

한 꼭짓점에서 그을 수 있는 대각선의 개수가 6개인 정다 각형은 정구각형이므로 한 내각의 크기는

$$\frac{180^{\circ} \times (9-2)}{9} = 140^{\circ}$$

149 🖺 36°

구하는 정다각형을 정n각형이라고 하면 대각선의 개수는 $\frac{n(n-3)}{2} = 35$

2 $n(n-3)=70=10\times7$ $\therefore n=10$ 따라서 정십각형의 한 외각의 크기는 $\frac{360^{\circ}}{10}=36^{\circ}$

150 달 54개

구하는 정다각형을 정n각형이라고 하면 한 외각의 크기는 $180^{\circ} \times \frac{1}{5+1} {=}\, 30^{\circ}$ 이므로

$$\frac{360^{\circ}}{n} = 30^{\circ} \qquad \therefore n = 12$$

따라서 정십이각형의 대각선의 개수는

$$\frac{12 \times (12 - 3)}{2} = 54(7)$$

151 \Box $n-2, 360^{\circ}$

Ⅵ -2 원과 부채꼴

pp. 71~85

152 🖺 🕠

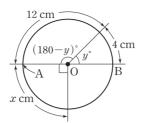
154 E

156 E O•

157 \boxdot 1) \overline{AD} 2) \overline{AD} , \overline{BC} 3) $\angle DOE$ 4) 120°

- 158 답 부채꼴, 중심각, 현, 활꼴, 호
- **159 탑 3** 중심각의 크기가 같으면 호의 길이는 같다. ∴ *x*=3
- **160 달 4** 호의 길이는 중심각의 크기에 정비례하므로
 25:50=x:8 ∴ x=4
- **161 달 5** 호의 길이는 중심각의 크기에 정비례하므로
 120: 40=15: *x* ∴ *x*=5
- **162 탑** 80 호의 길이가 같으면 중심각의 크기는 같다. ∴ *x*=80
- 163 **달 120** 호의 길이는 중심각의 크기에 정비례하므로 80: *x*=4:6 ∴ *x*=120
- 164 달 120 호의 길이는 중심각의 크기에 정비례하므로 x:30=8:2 ∴ x=120
- **165** 달 x=8, y=60호의 길이는 중심각의 크기에 정비례하므로 30:120=2:x ∴ x=830:y=2:4 ∴ y=60
- **166** 달 x=27, y=80호의 길이는 중심각의 크기에 정비례하므로 30:135=6:x ∴ x=2730:y=6:16 ∴ y=80
- **167** 달 *x*=7, *y*=36 호의 길이는 중심각의 크기에 정비례하므로 90:126=5:*x* ∴ *x*=7 90:*y*=5:2 ∴ *y*=36

호의 길이는 중심각의 크기에 정비례하므로

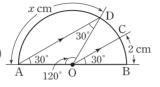

(180-y):y=12:4

(180-y):y=3:1

3y = 180 - y

4y = 180 : y = 45

45:90=4:x : x=8



169 🖹 8

오른쪽 그림에서

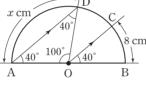
AD // OC 이므로

∠DAO=∠COB (동위각) =30°

OA=OD이므로 ∠ADO=∠DAO=30°

 $\therefore \angle AOD = 180^{\circ} - (30^{\circ} + 30^{\circ}) = 120^{\circ}$

호의 길이는 중심각의 크기에 정비례하므로


30:120=2:x : x=8

170 🖹 20

오른쪽 그림에서

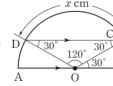
 $\overline{\mathrm{AD}}/\!\!/ \overline{\mathrm{OC}}$ 이므로

∠DAO=∠COB (동위각) =40°

OA=OD이므로 ∠ADO=∠DAO=40°

 $\therefore \angle AOD = 180^{\circ} - (40^{\circ} + 40^{\circ}) = 100^{\circ}$

호의 길이는 중심각의 크기에 정비례하므로


40:100=8:x : x=20

171 🖹 16

오른쪽 그림에서

 $\overline{\mathrm{AB}}/\!\!/ \overline{\mathrm{DC}}$ 이므로

∠OCD=∠COB (엇각) D

4 cm

 $\overline{OC} = \overline{OD}$ 이므로

 $\angle ODC = \angle OCD = 30^{\circ}$

 $\therefore \angle DOC = 180^{\circ} - (30^{\circ} + 30^{\circ}) = 120^{\circ}$

호의 길이는 중심각의 크기에 정비례하므로

30:120=4:x $\therefore x=16$

172 달 원, 같다, 같다, 정비례

173 🖺 9

중심각의 크기가 같으면 부채꼴의 넓이는 같다. $\therefore x=9$

174 🖹 12

부채꼴의 넓이는 중심각의 크기에 정비례하므로 25:75=4:x $\therefore x=12$

175 ▮ 6

부채꼴의 넓이는 중심각의 크기에 정비례하므로 100:40=15:x $\therefore x=6$

176 □ 36

부채꼴의 넓이가 같으면 중심각의 크기는 같다. x=36

177 🖹 90

부채꼴의 넓이는 중심각의 크기에 정비례하므로 45: x=3:6 $\therefore x=90$

178 달 120

부채꼴의 넓이는 중심각의 크기에 정비례하므로 40: x=4:12 $\therefore x=120$

179 답 합동, 같다, 같다, 정비례

180 🖹 5

중심각의 크기가 같으면 현의 길이는 같다. $\therefore x=5$

181 🖹 8

중심각의 크기가 같으면 현의 길이는 같다. $\therefore x=8$

182 量 40

현의 길이가 같으면 중심각의 크기는 같다. $\therefore x = 40$

183 🖹 55

현의 길이가 같으면 중심각의 크기는 같다.

 $\therefore x=55$

- 184 달 ○
- **185** 달 ×

현의 길이는 중심각의 크기에 정비례하지 않는다.

- 186 ᠍ ○
- 187 달 ×

중심각의 크기가 같으면 부채꼴의 넓이는 같다.

크기가 같은 중심각에 대한 호의 길이와 현의 길이는 각각 같다.

- 189 🖺 같다, 호, 중심각, 정비례
- **190 달** 12π cm (둘레의 길이)=2π×6=12π(cm)
- 191 🖺 18π cm

(둘레의 길이)= $2\pi \times 9 = 18\pi (cm)$

(둘레의 길이)= $2\pi \times 11=22\pi (cm)$

193 \Box 6π cm

반지름의 길이가 3 cm이므로 $(둘레의 길이)=2\pi \times 3=6\pi(\text{cm})$

194 **🖹** 10π cm

반지름의 길이가 5 cm이므로 $(5 \text{ all } 2 \text{ oll}) = 2\pi \times 5 = 10\pi \text{ (cm)}$

반지름의 길이가 $\frac{15}{2}$ cm이므로 $(둘레의 길이)=2\pi \times \frac{15}{2}=15\pi (cm)$

196 🖹 18π cm

(색칠한 부분의 둘레의 길이)

 $=2\pi\times6+2\pi\times3$

 $=12\pi+6\pi=18\pi$ (cm)

(색칠한 부분의 둘레의 길이)

 $=\frac{1}{2} \times 2\pi \times 7 + 14 = 7\pi + 14$ (cm)

198 🖹 8π cm

(색칠한 부분의 둘레의 길이)

$$=\!\frac{1}{2}\!\times\!2\pi\!\times\!4\!+\!2\!\times\!\left(\!\frac{1}{2}\!\times\!2\pi\!\times\!2\right)$$

 $=4\pi+4\pi=8\pi(cm)$

199 \Box 10π cm

(색칠한 부분의 둘레의 길이)

$$= \frac{1}{2} \times 2\pi \times 5 + \frac{1}{2} \times 2\pi \times 3 + \frac{1}{2} \times 2\pi \times 2$$

 $=5\pi + 3\pi + 2\pi = 10\pi (cm)$

200 $\frac{1}{2}$ cm

원의 반지름의 길이를 r cm라고 하면

(둘레의 길이)=
$$2\pi \times r = \pi$$
 $\therefore r = \frac{1}{2}$

따라서 원의 반지름의 길이는 $\frac{1}{2}$ cm이다.

201 🖹 2 cm

원의 반지름의 길이를 r cm라고 하면

 $2\pi r = 4\pi$ $\therefore r = 2$

따라서 원의 반지름의 길이는 2 cm이다.

202 $\frac{5}{2}$ cm

원의 반지름의 길이를 r cm라고 하면

$$2\pi r = 5\pi$$
 $\therefore r = \frac{5}{2}$

따라서 원의 반지름의 길이는 $\frac{5}{2}$ cm이다.

203 🖹 6 cm

원의 반지름의 길이를 $r \, \mathrm{cm}$ 라고 하면

 $2\pi r = 12\pi$ $\therefore r = 6$

따라서 원의 반지름의 길이는 6 cm이다.

204 **달** 13 cm

원의 반지름의 길이를 r cm라고 하면 $2\pi r = 26\pi$ $\therefore r = 13$ 따라서 원의 반지름의 길이는 13 cm이다.

205 🖹 15 cm

원의 반지름의 길이를 r cm라고 하면 $2\pi r = 30\pi$ $\therefore r = 15$ 따라서 원의 반지름의 길이는 15 cm이다.

$206 \equiv 16\pi \text{ cm}^2$

(넓이)= $\pi \times 4^2 = 16\pi (\text{cm}^2)$

(넓이)= $\pi \times 9^2 = 81\pi (\text{cm}^2)$

반지름의 길이가 3 cm이므로 $(\stackrel{\cdot}{\text{la}})=\pi \times 3^2=9\pi(\text{cm}^2)$

209 □ 25 π cm²

반지름의 길이가 5 cm이므로 (넓이)= $\pi \times 5^2 = 25\pi (\text{cm}^2)$

210 \Box 27 π cm²

(색칠한 부분의 넓이)= $\pi \times 6^2 - \pi \times 3^2$ = $36\pi - 9\pi = 27\pi (\text{cm}^2)$

(색칠한 부분의 넓이)= $\frac{1}{2} \times \pi \times 8^2 = 32\pi (\text{cm}^2)$

(색칠한 부분의 넓이)

$$= \frac{1}{2} \times \pi \times 4^{2} - 2 \times \left(\frac{1}{2} \times \pi \times 2^{2}\right)$$
$$= 8\pi - 4\pi = 4\pi (\text{cm}^{2})$$

213 \Box $10\pi \text{ cm}^2$

(색칠한 부분의 넓이)

$$= \frac{1}{2} \times \pi \times 5^{2} - \frac{1}{2} \times \pi \times 3^{2} + \frac{1}{2} \times \pi \times 2^{2}$$
$$= \frac{25}{2} \pi - \frac{9}{2} \pi + 2\pi = 10\pi \text{ (cm}^{2}\text{)}$$

원의 반지름의 길이를 r cm라고 하면 (둘레의 길이)= $2\pi r=2\pi$ $\therefore r=1$ $\therefore (넓이)=\pi \times 1^2=\pi (\text{cm}^2)$

원의 반지름의 길이를 r cm라고 하면 $2\pi r = 6\pi$ $\therefore r = 3$ $\therefore (\stackrel{}{\text{id}}) = \pi \times 3^2 = 9\pi \text{ (cm}^2)$

원의 반지름의 길이를 r cm라고 하면 $2\pi r = 14\pi$ $\therefore r = 7$ $\therefore (넓이) = \pi \times 7^2 = 49\pi (cm^2)$

217 \Box 144 π cm²

원의 반지름의 길이를 r cm라고 하면 $2\pi r = 24\pi$ $\therefore r = 12$ $\therefore (\stackrel{}{\text{Ho}}) = \pi \times 12^2 = 144\pi \text{ (cm}^2)$

218 \Box 4π cm

원의 반지름의 길이를 r cm라고 하면 $\pi r^2 = 4\pi$, $r^2 = 4$ \therefore r = 2 \therefore (둘레의 길이)= $2\pi \times 2 = 4\pi$ (cm)

원의 반지름의 길이를 r cm라고 하면 $\pi r^2 = 16\pi$, $r^2 = 16$ $\therefore r = 4$ \therefore (둘레의 길이)= $2\pi \times 4 = 8\pi$ (cm)

원의 반지름의 길이를 r cm라고 하면 $\pi r^2 = 25\pi$, $r^2 = 25$ $\therefore r = 5$ \therefore (둘레의 길이)= $2\pi \times 5 = 10\pi$ (cm)

221 \Box 16π cm

원의 반지름의 길이를 r cm라고 하면 $\pi r^2 = 64\pi$, $r^2 = 8$ $\therefore r = 8$ \therefore (둘레의 길이)= $2\pi \times 8 = 16\pi$ (cm)

222 답 원주율, π, 2πr, πr²

223 🖹 π cm

(호의 길이)=
$$2\pi \times 2 \times \frac{90}{360}$$
= π (cm)

224 🖹 5π cm

(호의 길이)=
$$2\pi \times 6 \times \frac{150}{360} = 5\pi (cm)$$

225 \Box 4π cm

(호의 길이)=
$$2\pi \times 9 \times \frac{80}{360} = 4\pi (cm)$$

226 달 21π cm

(호의 길이)=
$$2\pi \times 14 \times \frac{270}{360} = 21\pi (cm)$$

227 \boxdot 2π cm

(호의 길이)=
$$2\pi \times 3 \times \frac{120}{360} = 2\pi (cm)$$

228 🖹 π cm

(호의 길이)=
$$2\pi \times 6 \times \frac{30}{360} = \pi(cm)$$

229 \Box 7π cm

(호의 길이)=
$$2\pi \times 4 \times \frac{315}{360}$$
= 7π (cm)

230 **달** 60°

부채꼴의 중심각의 크기를 x° 라고 하면 $2\pi \times 6 \times \frac{x}{360} = 2\pi$ $\therefore x = 60$ 따라서 부채꼴의 중심각의 크기는 60° 이다.

231 달 100°

부채꼴의 중심각의 크기를 x° 라고 하면 $2\pi \times 9 \times \frac{x}{360} = 5\pi$ $\therefore x = 100$ 따라서 부채꼴의 중심각의 크기는 100° 이다.

232 **달** 90°

부채꼴의 중심각의 크기를 x° 라고 하면 $2\pi \times 8 \times \frac{x}{360} = 4\pi$ $\therefore x = 90$ 따라서 부채꼴의 중심각의 크기는 90° 이다.

233 달 135°

부채꼴의 중심각의 크기를 x°라고 하면 $2\pi \times 4 \times \frac{x}{360} = 3\pi$ $\therefore x = 135$ 따라서 부채꼴의 중심각의 크기는 135°이다.

234 🖹 8 cm

부채꼴의 반지름의 길이를 r cm라고 하면 $2\pi \times r \times \frac{45}{360} = 2\pi$ $\therefore r = 8$ 따라서 부채꼴의 반지름의 길이는 8 cm이다.

235 달 12 cm

부채꼴의 반지름의 길이를 r cm라고 하면 $2\pi \times r \times \frac{150}{360} = 10\pi$ $\therefore r = 12$ 따라서 부채꼴의 반지름의 길이는 12 cm이다.

부채꼴의 반지름의 길이를 r cm라고 하면 $2\pi \times r \times \frac{270}{360} = 6\pi$ $\therefore r = 4$ 따라서 부채꼴의 반지름의 길이는 4 cm이다.

237 🖹 18 cm

부채꼴의 반지름의 길이를 r cm라고 하면 $2\pi \times r \times \frac{50}{360} = 5\pi$ $\therefore r = 18$ 따라서 부채꼴의 반지름의 길이는 18 cm이다.

238 🖹 10π cm

(색칠한 부분의 둘레의 길이) $=4\times\left(2\pi\times5\times\frac{90}{360}\right)=10\pi(\mathrm{cm})$

239 \Box (8 π +8) cm

(색칠한 부분의 둘레의 길이) $=2\pi \times 8 \times \frac{90}{360} + \frac{1}{2} \times 2\pi \times 4 + 8$ $=4\pi + 4\pi + 8 = 8\pi + 8 \text{ (cm)}$

240 \Box $(3\pi+6)$ cm

(색칠한 부분의 둘레의 길이) $=2\pi\times6\times\frac{60}{360}+2\pi\times3\times\frac{60}{360}+(6-3)\times2$ $=2\pi+\pi+6=3\pi+6(\text{cm})$

(색칠한 부분의 둘레의 길이)

$$= 2\pi \times 4 \times \frac{240}{360} + 2\pi \times 2 \times \frac{240}{360} + 2 \times 2$$

$$=\frac{16}{3}\pi + \frac{8}{3}\pi + 4 = 8\pi + 4$$
(cm)

$242 \equiv 2\pi \text{ cm}^2$

(넓이)=
$$\pi \times 4^2 \times \frac{45}{360} = 2\pi (\text{cm}^2)$$

243 🖹 6π cm²

(넓이)=
$$\pi \times 6^2 \times \frac{60}{360} = 6\pi \text{ (cm}^2\text{)}$$

$244 ext{ } ext{ }$

(넓이)=
$$\pi \times 3^2 \times \frac{160}{360} = 4\pi (\text{cm}^2)$$

$245 \equiv 3\pi \text{ cm}^2$

(넓이)=
$$\pi \times 2^2 \times \frac{270}{360} = 3\pi (\text{cm}^2)$$

(넓이)=
$$\pi \times 3^2 \times \frac{120}{360} = 3\pi (\text{cm}^2)$$

$247 \equiv 12\pi \text{ cm}^2$

(넓이)=
$$\pi \times 12^2 \times \frac{30}{360} = 12\pi (\text{cm}^2)$$

$248 \equiv 14\pi \text{ cm}^2$

(넓이)=
$$\pi \times 4^2 \times \frac{315}{360} = 14\pi (\text{cm}^2)$$

$249 \equiv 24\pi \text{ cm}^2$

(넓이)=
$$\pi \times 8^2 \times \frac{135}{360} = 24\pi (\text{cm}^2)$$

250 ₺ 30°

부채꼴의 중심각의 크기를 x°라고 하면

$$\pi \times 6^2 \times \frac{x}{360} = 3\pi$$
 $\therefore x = 30$

따라서 부채꼴의 중심각의 크기는 30°이다.

251 달 80°

부채꼴의 중심각의 크기를 x°라고 하면

$$\pi \times 3^2 \times \frac{x}{360} = 2\pi \qquad \therefore x = 80$$

따라서 부채꼴의 중심각의 크기는 80°이다.

252 **달** 90°

부채꼴의 중심각의 크기를 x°라고 하면 $\pi \times 4^2 \times \frac{x}{360} = 4\pi \qquad \therefore x = 90$ 따라서 부채꼴의 중심각의 크기는 90°이다

253 ▮ 45°

부채꼴의 중심각의 크기를 x° 라고 하면 $\pi \times 12^2 \times \frac{x}{360} = 18\pi$ $\therefore x = 45$ 따라서 부채꼴의 중심각의 크기는 45° 이다.

부채꼴의 반지름의 길이를 r cm라고 하면 $\pi \times r^2 \times \frac{135}{360} = 24\pi$, $r^2 = 64$

 $\therefore r=8$

따라서 부채꼴의 반지름의 길이는 8 cm이다.

255 🖹 2 cm

부채꼴의 반지름의 길이를 r cm라고 하면

$$\pi \times r^2 \times \frac{90}{360} = \pi, r^2 = 4$$

 $\therefore r=2$

따라서 부채꼴의 반지름의 길이는 2 cm이다.

256 🖹 6 cm

부채꼴의 반지름의 길이를 r cm라고 하면

$$\pi \times r^2 \times \frac{60}{360} = 6\pi, r^2 = 36$$

∴ r=6

따라서 부채꼴의 반지름의 길이는 6 cm이다.

257 🖹 10 cm

부채꼴의 반지름의 길이를 $r \, \mathrm{cm}$ 라고 하면

$$\pi \times r^2 \times \frac{36}{360} = 10\pi, r^2 = 100$$

 $\therefore r=10$

따라서 부채꼴의 반지름의 길이는 10 cm이다.

(색칠한 부분의 넓이)

$$=2\times\left(4\times4-\pi\times4^2\times\frac{90}{360}\right)$$

 $=32-8\pi(\text{cm}^2)$

259 $\frac{25}{2}\pi \text{ cm}^2$

(색칠한 부분의 넓이)

$$= \pi \times 10^{2} \times \frac{90}{360} - \frac{1}{2} \times \pi \times 5^{2}$$
$$= 25\pi - \frac{25}{2}\pi = \frac{25}{2}\pi (\text{cm}^{2})$$

$\frac{260}{2} \equiv \frac{21}{2} \pi \text{ cm}^2$

(색칰한 부분의 넓이)

$$=\pi \times 12^{2} \times \frac{60}{360} - \pi \times 9^{2} \times \frac{60}{360}$$
$$=24\pi - \frac{27}{2}\pi = \frac{21}{2}\pi \text{ (cm}^{2}\text{)}$$

261 \Box $18\pi \text{ cm}^2$

(색칠한 부분의 넓이)

$$= \pi \times 6^{2} \times \frac{240}{360} - \pi \times 3^{2} \times \frac{240}{360}$$
$$= 24\pi - 6\pi = 18\pi \text{ (cm}^{2}\text{)}$$

262 **□** 30 cm²

(넓이)=
$$\frac{1}{2}$$
×(반지름의 길이)×(호의 길이)
$$=\frac{1}{2}\times 6\times 10=30 (cm^2)$$

$263 \equiv 20\pi \text{ cm}^2$

(넓이)=
$$\frac{1}{2}$$
×5×8 π =20 π (cm²)

$264 \equiv 2\pi \text{ cm}^2$

(넓이)=
$$\frac{1}{2} \times 4 \times \pi = 2\pi (\text{cm}^2)$$

$265 ext{ } ext{ } ext{ } 15\pi ext{ } ext{cm}^2$

(넓이)=
$$\frac{1}{2} \times 5 \times 6\pi = 15\pi (\text{cm}^2)$$

$266 \equiv 60\pi \text{ cm}^2$

(넓이)=
$$\frac{1}{2}$$
×12×10 π =60 π (cm²)

267 🖹 10 cm

부채꼴의 반지름의 길이를 r cm라고 하면

$$\frac{1}{2} \times r \times 3\pi = 15\pi$$
 $\therefore r = 10$

따라서 부채꼴의 반지름의 길이는 10 cm이다.

부채꼴의 반지름의 길이를 r cm라고 하면 $\frac{1}{2} \times r \times 2\pi = 5\pi \qquad \therefore r = 5$ 따라서 부채꼴의 반지름의 길이는 5 cm이다.

269 **달** 4 cm

부채꼴의 반지름의 길이를 r cm라고 하면 $\frac{1}{2} \times r \times 5\pi = 10\pi \qquad \therefore r = 4$ 따라서 부채꼴의 반지름의 길이는 4 cm이다.

270 달 14 cm

부채꼴의 반지름의 길이를 r cm라고 하면 $\frac{1}{2} \times r \times 3\pi = 21\pi$ $\therefore r = 14$ 따라서 부채꼴의 반지름의 길이는 14 cm이다.

271 \boxminus $2\pi r, x, \pi r^2, \frac{1}{2}$

● 단원 총정리 문제 Ⅵ평면도형

pp.86~87

- 01 ①, ④ 02 정오각형 03 9개 04 ③
- **05** 25° **06** 65° **07** ④ **08** 115°
- **09** ⑤ **10** 720° **11** ③ **12** 12 cm²
- **13** ② **14** (1) 135° (2) 6π cm²
- **15** $(6\pi+8)$ cm **16** $(25\pi-50)$ cm²

01 目 ①. ④

- ① 원은 곡선으로 이루어져 있다.
- ④ 사각기둥은 평면도형이 아니다.

02 답 정오각형

03 달 9개

구하는 다각형을 n각형이라고 하면

$$\frac{n(n-3)}{2} = 27$$

 $n(n-3) = 54 = 9 \times 6$: n=9따라서 구각형의 꼭짓점의 개수는 9개이다.

04 🖺 3

 $2(\times + \circ) = 180^{\circ}$ 이므로 $\times + \circ = 90^{\circ}$ 따라서 $\triangle ABP에서$ $\angle x = 180^{\circ} - (90^{\circ} + 50^{\circ}) = 40^{\circ}$

05 월 25°

 $(\angle x + 25^{\circ}) + 2 \angle x + (3 \angle x + 5^{\circ}) = 180^{\circ}$ $6 \angle x + 30^{\circ} = 180^{\circ}, 6 \angle x = 150^{\circ}$ $\therefore \angle x = 25^{\circ}$

 \triangle PAB, \triangle PCD에서 \angle APC는 외각이므로 $\angle x+50^\circ = \angle$ APC= $45^\circ+70^\circ$ $\therefore \angle x=115^\circ-50^\circ=65^\circ$

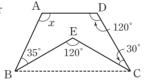
07 ▮ 4

△ABC에서

 $\angle ABC + \angle ACB = 180^{\circ} - 74^{\circ} = 106^{\circ}$

 $\angle IBC + \angle ICB = \frac{1}{2}(\angle ABC + \angle ACB)$ = $\frac{1}{2} \times 106^{\circ} = 53^{\circ}$

따라서 △IBC에서


 $\angle x = 180^{\circ} - (\angle IBC + \angle ICB)$ = $180^{\circ} - 53^{\circ} = 127^{\circ}$

08 🖶 115°

오른쪽 그림과 같이 보조선을 그으면 $\triangle EBC$ 에서

 $\angle EBC + \angle ECB$

 $=180^{\circ}-120^{\circ}=60^{\circ}$

따라서 사각형의 내각의 크기의 합은 360° 이므로 $\angle x+35^\circ+\angle EBC+\angle ECB+30^\circ+120^\circ=360^\circ$ $\angle x+35^\circ+60^\circ+30^\circ+120^\circ=360^\circ$

 $\therefore \angle x = 115^{\circ}$

09 🖺 🧐

다각형의 외각의 크기의 합은 360°이므로 주어진 오각형의 가장 작은 외각의 크기는

$$360^{\circ} \times \frac{1}{2+5+4+1+3} = 24^{\circ}$$

따라서 가장 큰 내각의 크기는

 $180^{\circ} - 24^{\circ} = 156^{\circ}$

10 **T** 720°

구하는 정다각형을 정n각형이라고 하면

$$\frac{180^{\circ} \times (n-2)}{n} = 120^{\circ}$$

 $180^{\circ} \times n - 360^{\circ} = 120^{\circ} \times n$, $60^{\circ} \times n = 360^{\circ}$

 $\therefore n=6$

따라서 정육각형의 내각의 크기의 합은

 $180^{\circ} \times (6-2) = 720^{\circ}$

[다른 풀이]

정n각형의 한 내각의 크기가 120° 이므로 한 외각의 크기는 $180^{\circ} - 120^{\circ} = 60^{\circ}$

즉,
$$\frac{360^{\circ}}{n} = 60^{\circ}$$
에서 $n = 6$

따라서 정육각형의 내각의 크기의 합은

 $180^{\circ} \times (6-2) = 720^{\circ}$

11 🖺 ③

구하는 정다각형을 정n각형이라 하고, 정n각형의 한 외각의 크기를 $\angle x$ 라고 하면 한 내각의 크기는 $3\angle x$ 이므로

 $3 \angle x + \angle x = 180^{\circ}, 4 \angle x = 180^{\circ}$

 $\therefore \angle x = 45^{\circ}$

즉, $\frac{360°}{n}$ =45°에서 n=8

따라서 정팔각형의 대각선의 개수는

 $\frac{8 \times (8-3)}{2} = 20(7)$

12 🖹 12 cm²

호의 길이는 중심각의 크기에 정비례하므로

 $\angle AOB$: $\angle COD = 10:4$

이때, 부채꼴 COD의 넓이를 $x \operatorname{cm}^2$ 라고 하면 부채꼴의 넓이도 중심각의 크기에 정비례하므로

 $\angle AOB : \angle COD = 30 : x$

따라서 10 : 4=30 : *x*이므로

10x = 120 : x = 12

13 월 ②

(색칠한 부분의 넓이)

=(반지름의 길이가 6 cm인 원의 넓이)

-(반지름의 길이가 3 cm인 원의 넓이)

 $=\pi\times6^2-\pi\times3^2$

 $=36\pi-9\pi=27\pi(\text{cm}^2)$

14 \boxminus (1) **135**° (2) 6π cm²

(1) 부채꼴의 중심각의 크기를 x° 라고 하면

$$2\pi \times 4 \times \frac{x}{360} = 3\pi$$
 $\therefore x = 135$

따라서 부채꼴의 중심각의 크기는 135°이다

(2) 부채꼴의 넓이를 $S \text{ cm}^2$ 라고 하면

$$S = \frac{1}{2} \times 4 \times 3\pi = 6\pi$$

따라서 부채꼴의 넓이는 6π cm²이다.

15 $(6\pi + 8)$ cm

(색칠한 부분의 둘레의 길이)

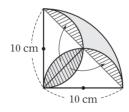
- =(반지름의 길이가 4 cm인 반원의 호의 길이)
 - +(반지름의 길이가 8 cm, 중심각의 크기가 45°인

부채꼴의 호의 길이)

+8

$$= \frac{1}{2} \times 2\pi \times 4 + 2\pi \times 8 \times \frac{45}{360} + 8$$

 $=4\pi+2\pi+8=6\pi+8$ (cm)



오른쪽 그림과 같이 도형을 이동시키면

(색칠한 부분의 넓이)

$$= \pi \times 10^{2} \times \frac{90}{360} - \frac{1}{2} \times 10 \times 10$$

 $=25\pi-50(\text{cm}^2)$

VIII 입체도형

Ⅶ -1 다면체와 회전체

pp. 92~106

01 답 〇

다면체는 다각형인 면으로만 둘러싸인 입체도형이다.

02 탑 ×

다각형이 아닌 원이나 곡면으로 둘러싸인 입체도형은 다면체가 아니다.

- 04 월 ○
- 05 달 5개
- 06 🖺 6개
- **07** 달 7개 **08** 달 8개
- 09 달 6개
- 10 儲 9개
- 11 달 12개 12 달 15개
- 13 답 면의 개수: 4개, 사면체
- 14 달 면의 개수: 5개, 오면체
- 15 답 면의 개수: 6개, 육면체
- 16 답 면의 개수: 8개, 팔면체
- 17 답 다면체, 오면체, 육면체
- 18 답 사각형, 사각뿔대
- 19 달 오각형, 오각뿔대
- 20 답 육각형, 육각뿔대
- 21 달 8개, 12개, 6개
- 22 달 10개, 15개, 7개
- 23 달 12개, 18개, 8개
- 24 답 사다리꼴

각뿔대의 옆면은 모두 사다리꼴이다.

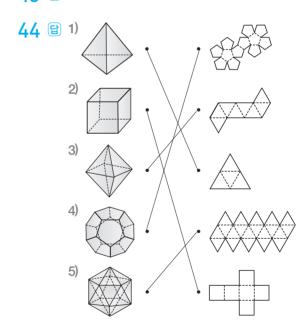
- 25 답 사다리꼴 26 답 사다리꼴
- 27 달 사다리꼴

- - 1) 밑면의 개수가 2개인 것은 각기둥과 각뿔대이다.
 - 2) 옆면의 모양이 사다리꼴인 것은 각뿔대이다.
 - **3)**∼**5)** 주어진 다면체의 면, 꼭짓점, 모서리의 개수는 다음 표와 같다.

	면의 개수(개)	꼭짓점의 개수(개)	모서리의 개수(개)
ㄱ. 사각기둥	6	8	12
ㄴ. 오각뿔	6	6	10
ㄷ. 오각뿔대	7	10	15
ㄹ. 육각뿔	7	7	12
ㅁ. 사각뿔대	6	8	12
ㅂ. 육각기둥	8	12	18
ㅅ. 육각뿔대	시. 육각뿔대 8 12		18
ㅇ. 칠각뿔	8 8 14		14
ㅈ. 팔각기둥	10	16	24

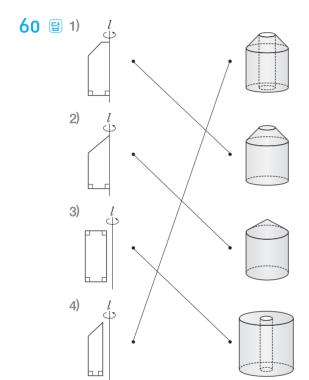
- 29 🗈 각뿔대, 2, 사다리꼴
- 30 답 해설 참조

	정사면체	정육면체	정팔면체	정십이면체	정이십면체
겨냥도	\bigoplus				
면의 모양	정삼각형	정사각형	정삼각형	정오각형	정삼각형
한 꼭짓점에 모인 면의	\triangle		\Diamond	\Leftrightarrow	\otimes
개수(개)	3	3	4	3	5
꼭짓점의 개수(개)	4	8	6	20	12
모서리의 개수(개)	6	12	12	30	30
면의 개수(개)	4	6	8	12	20


31 달 ×

모든 면이 합동인 정다각형이고 각 꼭짓점에 모인 면의 개수가 같은 다면체를 정다면체라고 한다.

- **32** 🖶 ○
- 33 월 ○
- 34 🖶 ×


정다면체의 면의 모양은 정삼각형, 정사각형, 정오각형 중하나이다.

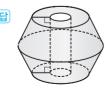
- **35** 탑 × 정팔면체의 모서리의 개수는 12개이다.
- 36 월 ○
- 37 🗈 정사면체, 정팔면체, 정이십면체
- 38 답 정육면체
- 39 답 정십이면체
- 40 답 정사면체, 정육면체, 정십이면체
- 41 답 정팔면체
- 42 답 정이십면체
- 43 달 정다면체, 정사면체, 정팔면체, 정이십면체, 5

- **45 □** 1) 2) × 3) 4) ×
- 46 탑 꼭짓점 E
- 47 답 꼭짓점 D
- 48 달 모서리 AC(모서리 EC), 모서리 AF(모서리 EF), 모서리 BC(모서리 DC), 모서리 BF(모서리 DF)
- 49 달 모서리 CF
- **50** 달 꼭짓점 G
- **51** 달 모서리 CD(또는 모서리 FG)

- 52 달 모서리 $\mathrm{DJ}(\mathrm{PHOI}\ \mathrm{FJ})$, 모서리 $\mathrm{DE}(\mathrm{PHOI}\ \mathrm{FE})$, 모서리 $\mathrm{JC}(\mathrm{PHOI}\ \mathrm{JG})$, 모서리 $\mathrm{EC}(\mathrm{PHOI}\ \mathrm{EG})$
- 53 달 정육면체, E
- **54** 🖺 O
- **55 달** ×
- 56 월 ○
- **57** 🖺 ×
- 58 월 ○
- **59 ▮** ○

61 □

62 월



64 [□]

65 말

66 🖺 회전체, 원뿔대

- 67 🖺 🦳
- **68 말**

69 □

70 달

71 달

73 🖺

74 🖺

75 □

76 □

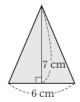
- **77 ⓑ** 1) ∟ 2) ≥ 3) □ 4) ¬ 5) □
- 78 월 ○
- **79 ▮** ○
- 80 🖹 ×

원뿔대를 회전축을 포함하는 평면으로 자를 때 생기는 단면은 사다리꼴이다.

- **81 월** ○
- **82** 달

83 □

84 ₽


85 □

86 답 단면: 해설참조, 21 cm²

(단면의 넓이) $=\frac{1}{2} \times 6 \times 7$

 $=21(cm^{2})$

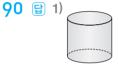
87 답 단면: 해설참조, 81 cm²

(단면의 넓이)

$$= \frac{1}{2} \times (6+12) \times 9$$

 $=81(cm^{2})$

88 답 단면: 해설참조, 25π cm²


(단면의 넓이)

$$=\pi \times 5^2$$

 $=25\pi (cm^2)$

89 답 원, 직사각형, 이등변삼각형, 사다리꼴, 원

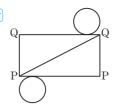
92 \Box $a=6, b=12\pi$

 $b=2\pi\times 6=12\pi$

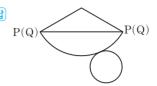
 $b=2\pi\times3=6\pi$

 $94 \equiv a=5, b=9$

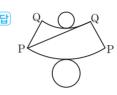
95 \Box $a=13, b=12\pi$


 $b = 2\pi \times 6 = 12\pi$

97 \Box $a=14\pi, b=26\pi$


 $a=2\pi\times7=14\pi$

 $b = 2\pi \times 13 = 26\pi$


98 달

99 답

100 답

101 답 원기둥, 둘레, 직사각형, 원뿔, 부채꼴, 호, 원뿔대

₩ -2 입체도형의 겉넓이와 부피

pp. 107~129

102 🖹 1) 24 cm² 2) 288 cm² 3) 336 cm²

1) 삼각기둥의 밑면이 직각삼각형이므로

(밑넓이)=
$$\frac{1}{2}$$
×8×6=24(cm²)

2) 밑면의 둘레의 길이는 24 cm이고, 높이는 12 cm이므로

(옆넓이)=24×12=288(cm²)

3) (겉넓이)=(밑넓이)×2+(옆넓이)

 $=24 \times 2 + 288$

 $=336(cm^{2})$

103 🖹 1) 36 cm² 2) 280 cm² 3) 352 cm²

1) 사각기둥의 밑면이 사다리꼴이므로

(밀넓이)=
$$\frac{1}{2}$$
×(6+12)×4=36(cm²)

2) 밑면의 둘레의 길이는 28 cm이고, 높이는 10 cm이므로

(옆넒이)=28×10=280(cm²)

3) (겉넓이)=(밑넓이)×2+(옆넓이)

 $=36 \times 2 + 280$

 $=352(cm^2)$

104 🖹 152 cm²

(밀넓이)=
$$\frac{1}{2} \times 6 \times 4 = 12 (cm^2)$$

(옆넓이)= $(5+6+5) \times 8=128$ (cm²)

∴ (겉넓이)=12×2+128=152(cm²)

105 🖹 292 cm²

(밑넓이)=8×7=56(cm²) (옆넓이)=(7+8+7+8)×6=180(cm²) ∴ (겥넓이)=56×2+180=292(cm²)

106 🖹 540 cm²

(밀넓이)= $\frac{1}{2}$ ×(7+13)×8=80(cm²) (열넓이)=(8+7+10+13)×10=380(cm²) \therefore (걸넓이)=80×2+380=540(cm²)

- 107 🖹 1) 27 cm² 2) 240 cm² 3) 120 cm² 4) 414 cm²
 - 1) (밑넓이)= $6 \times 6 3 \times 3 = 27 \text{ (cm}^2)$
 - 2) (바깥쪽의 옆넓이)=(6+6+6+6)×10 =240(cm²)
 - 3) (안쪽의 옆넓이)=(3+3+3+3)×10 =120(cm²)
 - 4) (겉넓이)=27×2+240+120 =414(cm²)

108 달 2, 옆넓이, 2, 둘레, 높이

109 🖹 1) 30 cm² 2) 10 cm 3) 300 cm³

1) 밑면이 직각삼각형이므로

(밑넓이)=
$$\frac{1}{2} \times 5 \times 12 = 30 \text{ (cm}^2)$$

3) (부피)=(밑넓이)×(높이) =30×10=300(cm³)

110 **1** 1) 20 cm² 2) 6 cm 3) 120 cm³

1) 밑면이 직사각형이므로 (밑넓이)=4×5=20(cm²)

3) (부피)=(밑넓이)×(높이) =20×6=120(cm³)

111 🔁 1) 36 cm² 2) 9 cm 3) 324 cm³

1) 밑면이 사다리꼴이므로

(밑넓이)=
$$\frac{1}{2}$$
×(6+12)×4=36(cm²)

3) (부피)= $36 \times 9 = 324 (cm^3)$

112 🖹 1) 24 cm² 2) 10 cm 3) 240 cm³

1) 밑면인 오각형의 넓이는 사다리꼴과 삼각형의 넓이의 한과 같으므로

(밑넓이)=
$$\frac{1}{2}$$
×(4+8)×2+ $\frac{1}{2}$ ×8×3
$$=12+12=24(cm^2)$$

3) (부피)= $24 \times 10 = 240 \text{ (cm}^3\text{)}$

113 🖹 10 cm

(부피)=(밑넓이)×(높이)이므로 180=18×(높이) ∴ (높이)=10(cm)

114 🖹 4 cm

(부피)=(밑넓이)×(높이)이므로 72=18×(높이) ∴ (높이)=4(cm)

115 🖹 19 cm²

(부피)=(밑넓이)×(높이)이므로 285=(밑넓이)×15 ∴ (밑넓이)=19(cm²)

116 🖹 28 cm²

(부피)=(밑넓이)×(높이)이므로 448=(밑넓이)×16 ∴ (밑넓이)=28(cm²)

117 🖹 1) 14 cm² 2) 6 cm 3) 84 cm³

1) (밑넓이)

=(큰 직사각형의 넓이)-(작은 직사각형의 넓이) $=4 \times 5 - 2 \times 3 = 14 (cm^2)$

3) (부피)=(밑넓이)×(높이) =14×6=84(cm³)

[다른 풀이]

(부피)=(큰 각기둥의 부피)-(작은 각기둥의 부피)= $(4\times5)\times6-(2\times3)\times6$ = $120-36=84(cm^3)$

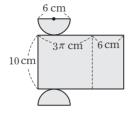
118 달 높이, Sh

119 \Box 1) 9π cm² 2) 60π cm² 3) 78π cm²

1) (밑넓이)= $\pi \times 3^2 = 9\pi (\text{cm}^2)$

2) (옆넓이)= $2\pi \times 3 \times 10 = 60\pi (\text{cm}^2)$

3) (겉넓이)=(밑넓이) \times 2+(옆넓이) = $9\pi \times 2 + 60\pi = 78\pi (\text{cm}^2)$

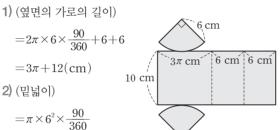

120 Ξ 1) 25π cm² 2) 120π cm² 3) 170π cm²

1) (밑넓이)= $\pi \times 5^2 = 25\pi (\text{cm}^2)$

2) (옆넓이)= $(2\pi \times 5) \times 12 = 120\pi (cm^2)$

3) (겉넓이)= $25\pi \times 2 + 120\pi = 170\pi (\text{cm}^2)$

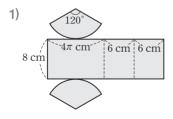
- 3) $(30\pi+60)$ cm² 4) $(39\pi+60)$ cm²
 - 1) 옆면의 가로의 길이는 밑면 인 반원의 호의 길이와 지 름의 길이의 합이므로 (옆면의 가로의 길이)


$$= \frac{1}{2} \times 2\pi \times 3 + 6$$
$$= 3\pi + 6 \text{ (cm)}$$

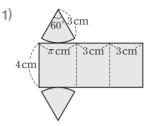
2) (밀넓이)=
$$\frac{1}{2} \times \pi \times 3^2 = \frac{9}{2} \pi (\text{cm}^2)$$

3) (옆넓이)=
$$(3\pi+6) \times 10=30\pi+60$$
(cm²)

4) (겉넓이)=
$$\frac{9}{2}\pi \times 2 + 30\pi + 60 = 39\pi + 60$$
(cm²)


122 \Box 1) $(3\pi+12)$ cm 2) $9\pi \text{ cm}^2$ 3) $(30\pi+120)$ cm² 4) $(48\pi+120)$ cm²

$$=2\pi \times 6 \times \frac{90}{360} + 6 + 6$$


$$=3\pi + 12(\text{cm})$$

- $=9\pi (cm^2)$
- 3) (옆넓이)= $(3\pi+12)\times 10$ $=30\pi+120(\text{cm}^2)$
- 4) (겉넓이)= $9\pi \times 2 + 30\pi + 120$ $=48\pi+120(\text{cm}^2)$
- 123 답 1) 해설 참조 2) $12\pi \text{ cm}^2$ 3) $(32\pi+96)$ cm² 4) $(56\pi+96)$ cm²

- 2) (밀넓이)= $\pi \times 6^2 \times \frac{120}{360} = 12\pi (cm^2)$
- 3) (옆넓이) $=\left(2\pi\times6\times\frac{120}{360}+6+6\right)\times8$ $=(4\pi+12)\times8=32\pi+96$ (cm²)
- 4) (겉넓이)= $12\pi \times 2 + 32\pi + 96 = 56\pi + 96$ (cm²)

124 달 1) 해설 참조 2) $\frac{3}{2}\pi$ cm² 3) $(4\pi+24)$ cm² 4) $(7\pi+24)$ cm²

- 2) (밀덟이)= $\pi \times 3^2 \times \frac{60}{360} = \frac{3}{2}\pi (\text{cm}^2)$
- 3) (옆넓이)= $\left(2\pi \times 3 \times \frac{60}{360} + 3 + 3\right) \times 4$ $=(\pi+6)\times4=4\pi+24(\text{cm}^2)$
- 4) (겉넓이)= $\frac{3}{2}\pi \times 2 + 4\pi + 24$ $=7\pi + 24$ (cm²)
- 125 \Box 1) 21π cm² 2) $100\pi \text{ cm}^2$ 3) $40\pi \text{ cm}^2$ 4) $182\pi \text{ cm}^2$
 - 1) (밀넓이)= $\pi \times 5^2 \pi \times 2^2 = 21\pi (\text{cm}^2)$
 - 2) (바깥쪽의 옆넓이)= $(2\pi \times 5) \times 10 = 100\pi (\text{cm}^2)$
 - 3) (안쪽의 옆넓이)= $(2\pi \times 2) \times 10 = 40\pi (\text{cm}^2)$
 - 4) (겉넓이)= $21\pi \times 2 + 100\pi + 40\pi = 182\pi (\text{cm}^2)$
- 126 \Box 1) 32π cm² 2) $96\pi \text{ cm}^2$ 3) $32\pi \text{ cm}^2$ 4) $192\pi \text{ cm}^2$
 - 1) (밀넓이)= $\pi \times 6^2 \pi \times 2^2 = 32\pi (\text{cm}^2)$
 - 2) (바깥쪽의 옆넓이)= $(2\pi \times 6) \times 8 = 96\pi (\text{cm}^2)$
 - 3) (안쪽의 옆넓이)= $(2\pi \times 2) \times 8 = 32\pi (cm^2)$
 - 4) (겉넓이)= $32\pi \times 2 + 96\pi + 32\pi = 192\pi (\text{cm}^2)$
- 127 답 밑넓이, $2\pi rh$
- 128 \Box 1) 9π cm² 2) 10 cm 3) 90π cm³
 - 1) (밀넓이)= $\pi \times 3^2 = 9\pi (\text{cm}^2)$
 - 3) (부피)=(밑넓이)×(높이)
 - $=9\pi \times 10 = 90\pi (\text{cm}^3)$
- 129 달 밑넓이 : 16π cm², 부피 : 128π cm³ (밑넓이)= $\pi \times 4^2 = 16\pi (cm^2)$

(부피)=(밑넓이)×(높이)

 $=16\pi \times 8 = 128\pi (\text{cm}^3)$

130 답 밑넓이 : $25\pi \text{ cm}^2$, 부피 : $175\pi \text{ cm}^3$

(밀넓이)= $\pi \times 5^2 = 25\pi (\text{cm}^2)$

 $(부피) = 25\pi \times 7 = 175\pi (cm^3)$

- 131 달 밑넓이: 81π cm², 부피: 486π cm³ (밑넓이)=π×9²=81π(cm²)

(밀덞이)=
$$\pi \times 6^2 \times \frac{60}{360} = 6\pi (\text{cm}^2)$$

(밀넓이)=
$$\pi \times 3^2 \times \frac{120}{360} = 3\pi (\text{cm}^2)$$

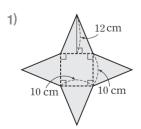
- \therefore (부피)= $3\pi \times 9=27\pi$ (cm³)

(밑넓이)=
$$\pi \times 6^2 \times \frac{270}{360} = 27\pi (\text{cm}^2)$$

- \therefore ($\stackrel{\text{\tiny H}}{\vdash}$ $\stackrel{\text{\tiny J}}{=}$)=27 π ×7=189 π (cm³)

(밑넓이)=
$$\pi \times 7^2 - \pi \times 2^2 = 45\pi (\text{cm}^2)$$

136 \Box $72\pi \text{ cm}^3$

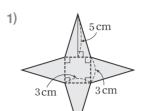

(밀넓이)=
$$\pi \times 4^2 - \pi \times 2^2 = 12\pi (\text{cm}^2)$$

$$\therefore$$
 (부회)= $12\pi \times 6 = 72\pi (\text{cm}^3)$

(밑넓이)=
$$\pi \times 7^2 - \pi \times 3^2 = 40\pi (\text{cm}^2)$$

$$\therefore$$
 (부յ피)= $40\pi \times 8 = 320\pi (cm^3)$

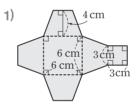
- **138** 旨 높이, πr^2 , $\pi r^2 h$
- 139 달 1) 해설 참조 2) 100 cm² 3) 240 cm² 4) 340 cm²



2) 사각뿔의 밑면이 정사각형이므로 (밑넓이)=10×10=100(cm²) 3) 사각뿔의 옆면은 모두 합동인 삼각형이므로

(옆넓이)=
$$\left(\frac{1}{2}\times10\times12\right)\times4=240$$
(cm²)

$$=100+240=340(\text{cm}^2)$$


- 140 답 1) 해설 참조 3) 30 cm²
- 2) 9 cm² 4) 39 cm²

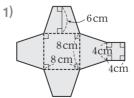
2) (밑넓이)=3×3=9(cm²)

3) (옆넓이)=
$$\left(\frac{1}{2} \times 3 \times 5\right) \times 4 = 30 \text{ (cm}^2)$$

- 4) (겉넓이)=9+30=39(cm²)
- 141 답 1) 해설 참조 2) 45 cm² 3) 72 cm² 4) 117 cm²

2) 두 밑면이 모두 정사각형이므로

(두 밑면의 넓이의 합)=
$$3 \times 3 + 6 \times 6 = 45$$
(cm²)


3) 사각뿔대의 옆면은 모두 합동인 사다리꼴이므로

(옆넓이)=
$$\left\{\frac{1}{2} \times (3+6) \times 4\right\} \times 4 = 72(\text{cm}^2)$$

4) (겉넓이)=(두 밑면의 넓이의 합)+(옆넓이)

$$=45+72=117(\text{cm}^2)$$

142 답 1) 해설 참조 2) 80 cm² 3) 144 cm² 4) 224 cm²

2) (두 밑면의 넓이의 합)=8×8+4×4=80(cm²)

3) (옆넓이)=
$$\left\{\frac{1}{2} \times (4+8) \times 6\right\} \times 4 = 144 \text{(cm}^2)$$

- 4) (겉넓이)=80+144=224(cm²)
- 143 🖹 1, 옆넓이

- 144 🖹 1) 12 cm² 2) 5 cm 3) 20 cm³
 - 1) 삼각뿔의 밑면이 삼각형이므로

(밑넓이)=
$$\frac{1}{2} \times 4 \times 6 = 12 \text{(cm}^2\text{)}$$

$$=\frac{1}{3} \times 12 \times 5 = 20 \text{ cm}^3$$

- 145 🖹 1) 25 cm² 2) 6 cm 3) 50 cm³
 - 1) (밑넓이)=5×5=25(cm²)
 - 3) $(\exists \exists) = \frac{1}{2} \times 25 \times 6 = 50 \text{ cm}^3$
- 146 🖹 1) 18 cm² 2) 6 cm 3) 36 cm³
 - 1) 삼각뿔의 밑면이 △BCD이므로

(밑넓이)=
$$\frac{1}{2} \times 6 \times 6 = 18 \text{ (cm}^2)$$

- 2) 삼각뿔의 밑면이 △BCD일 때, 삼각뿔의 높이는 CG이므로 높이는 6 cm이다.
- 3) $(\frac{\exists \exists}{3}) = \frac{1}{3} \times 18 \times 6 = 36 \text{ cm}^3$
- **147 1** 1) 48 cm³ 2) 6 cm³ 3) 42 cm³
 - 1) (자르기 전 큰 사각뿔의 부피)

$$=\frac{1}{3}\times(6\times6)\times4=48$$
 (cm³)

2) (잘린 작은 사각뿔의 부피)

$$=\frac{1}{3}\times(3\times3)\times2=6$$
(cm³)

- 3) (사각뿔대의 부피)
 - =(자르기 전 큰 사각뿔의 부피)—(잘린 작은 사각뿔의 부피)
 - $=48-6=42(cm^3)$
- 148 $\boxminus \frac{1}{2}, \frac{1}{2}, \frac{1}{2}Sh$
- 2) $9\pi \text{ cm}^2$
- 3) $15\pi \text{ cm}^2$
- 4) $24\pi \text{ cm}^2$

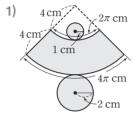
 $6\pi \,\mathrm{cm}$

- 1) 옆면인 부채꼴의 호의 길이 는 밑면인 원의 둘레의 길이 와 같으므로
 - (부채꼴의 호의 길이)
 - $=2\pi\times3=6\pi(cm)$
- 2) (밑넓이)= $\pi \times 3^2 = 9\pi (cm^2)$
- 3) (옆넓이)= $\frac{1}{2} \times 5 \times 6\pi = 15\pi (\text{cm}^2)$
- 4) (겉넓이)=(밑넓이)+(옆넓이)

$$=9\pi+15\pi=24\pi(\text{cm}^2)$$

- 150 \Box 1) 4π cm
- 2) $4\pi \text{ cm}^2$
- 3) $12\pi \text{ cm}^2$
- 4) $16\pi \text{ cm}^2$

6 cm⁻


1) (부채꼴의 호의 길이)

$$=2\pi\times2=4\pi(cm)$$

- 2) (밑넓이)= $\pi \times 2^2 = 4\pi (\text{cm}^2)$
- 3) (옆넓이)= $\frac{1}{2} \times 6 \times 4\pi$

$$=12\pi (cm^2)$$

- 4) (겉넓이)= $4\pi+12\pi=16\pi$ (cm²)
- 151 답 1) 해설 참조
- 2) $5\pi \text{ cm}^2$
- 3) $12\pi \text{ cm}^2$
- 4) $17\pi \text{ cm}^2$

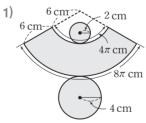
(큰 부채꼴의 호의 길이)= $2\pi \times 2=4\pi$ (cm)

(작은 부채꼴의 호의 길이)= $2\pi \times 1=2\pi$ (cm)

- 2) (두 밑면의 넓이의 합)= $\pi \times 1^2 + \pi \times 2^2 = 5\pi (\text{cm}^2)$
- 3) 옆넓이는 큰 부채꼴의 넓이에서 작은 부채꼴의 넓이를 빼면 되므로

(옆넓이)=
$$\frac{1}{2} \times 8 \times 4\pi - \frac{1}{2} \times 4 \times 2\pi$$

$$=16\pi-4\pi=12\pi(\text{cm}^2)$$


4) (겉넓이)=(두 밑면의 넓이의 합)+(옆넓이)

 $=5\pi+12\pi=17\pi(\text{cm}^2)$

152 답 1) 해설 참조 2) $20\pi \text{ cm}^2$

4) $56\pi \text{ cm}^2$

(큰 부채꼴의 호의 길이)= $2\pi \times 4 = 8\pi (cm)$

(작은 부채꼴의 호의 길이)= $2\pi \times 2=4\pi$ (cm)

- 2) (두 밑면의 넓이의 합)= $\pi \times 2^2 + \pi \times 4^2 = 20\pi (\text{cm}^2)$
- 3) (옆넓이)= $\frac{1}{2} \times 12 \times 8\pi \frac{1}{2} \times 6 \times 4\pi = 36\pi (\text{cm}^2)$
- 4) (겉넓이)= $20\pi + 36\pi = 56\pi (\text{cm}^2)$
- **153** 달 밑넓이, $\frac{1}{2}$, $\pi r l$

- **154** \boxdot 1) 9π cm² 2) 6 cm 2) 18π cm³
 - 1) (밀넓이)= $\pi \times 3^2 = 9\pi (\text{cm}^2)$
 - 3) (부피)= $\frac{1}{3}$ ×(밑넓이)×(높이) $=\frac{1}{3}$ ×9 π ×6=18 π (cm³)

$$(\stackrel{\text{\tiny H}}{\neg} \stackrel{\text{\tiny J}}{\neg}) = \frac{1}{3} \times (\pi \times 4^2) \times 9 = 48\pi (\text{cm}^3)$$

156 \Box $12\pi \text{ cm}^3$

$$(\stackrel{\mathbf{\mathsf{H}}}{\boldsymbol{-}} \stackrel{\mathbf{\mathsf{J}}}{\boldsymbol{-}}) \!=\! \frac{1}{3} \!\times\! (\pi \!\times\! 3^{\scriptscriptstyle 2}) \!\times\! 4 \!=\! 12\pi (\mathsf{cm}^{\scriptscriptstyle 3})$$

$$(\stackrel{\text{\tiny H}}{\neg} \stackrel{\text{\tiny J}}{\neg}] = \frac{1}{3} \times (\pi \times 5^2) \times 6 = 50\pi (\text{cm}^3)$$

- - 1) (자르기 전 큰 원뿔의 부피)

$$=\frac{1}{3} \times (\pi \times 6^2) \times 10 = 120\pi (\text{cm}^3)$$

2) (잘린 작은 원뿔의 부피)

$$=\frac{1}{3} \times (\pi \times 3^2) \times 5 = 15\pi (\text{cm}^3)$$

- 3) (원뿔대의 부피)
 - =(자르기 전 큰 원뿔의 부피) (잘린 작은 원뿔의 부피)
 - $=120\pi-15\pi=105\pi$ (cm³)

$$(+ $\mathbf{y}) = \frac{1}{3} \times (\pi \times 9^2) \times 12 - \frac{1}{3} \times (\pi \times 3^2) \times 4$
$$= 324\pi - 12\pi = 312\pi (\mathbf{cm}^3)$$$$

160 \Box 104 π cm³

$$(\stackrel{\square}{+} \stackrel{\square}{=} \frac{1}{3} \times (\pi \times 6^2) \times 9 - \frac{1}{3} \times (\pi \times 2^2) \times 3$$
$$= 108\pi - 4\pi = 104\pi (\text{cm}^3)$$

161 \Box 252 π cm³

(부회)=
$$\frac{1}{3}$$
×(π ×8²)×12 $-\frac{1}{3}$ ×(π ×2²)×3
=256 π -4 π =252 π (cm³)

162 $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\pi r^2 h$

- 163 달 반지름의 길이 : 6 cm, 겉넓이 : 144π cm² 구의 반지름의 길이가 6 cm이므로 (겉넓이)=4π×6²=144π(cm²)
- 164 답 반지름의 길이 : 5 cm, 겉넓이 : 100π cm² 구의 반지름의 길이가 5 cm이므로 (겉넓이)= $4\pi \times 5^2 = 100\pi$ (cm²)
- 165 달 반지름의 길이 : 4 cm, 겉넓이 : 64π cm² 구의 반지름의 길이가 4 cm이므로 (겉넓이)=4π×4²=64π(cm²)
- 166 달 400 π cm² (겉넓이)= $4\pi \times 10^2 = 400\pi$ (cm²)
- 167 달 256π cm² (겉넓이)=4π×8²=256π(cm²)
- 168 달 196π cm² (겉넓이)=4π×7²=196π(cm²)
- 169 달 324π cm² (걸넓이)=4π×9²=324π(cm²)
- - 1) $4\pi \times 3^2 = 36\pi (\text{cm}^2)$
 - 2) $\pi \times 3^2 = 9\pi (\text{cm}^2)$
 - 3) (겉넓이)= $\frac{1}{2}$ ×(구의 겉넓이)+(단면인 원의 넓이) $=\frac{1}{2} \times 36\pi + 9\pi = 27\pi (\,\mathrm{cm}^2)$
- - 1) $4\pi \times 2^2 = 16\pi (\text{cm}^2)$
 - 2) $\pi \times 2^2 \times \frac{90}{360} = \pi (\text{cm}^2)$
 - 3) 이 입체도형은 반지름의 길이가 2 cm인 구의 $\frac{1}{8}$ 을 잘라내고 남은 것이므로

(겉넓이)=
$$\frac{7}{8} \times 16\pi + \pi \times 3$$

= $14\pi + 3\pi = 17\pi (\text{cm}^2)$

173 $\frac{500}{3}\pi \text{ cm}^3$

구의 반지름의 길이가 5 cm이므로

$$(\frac{14}{5}$$
되)= $\frac{4}{3}\pi \times 5^3 = \frac{500}{3}\pi (\text{cm}^3)$

$$("="되")=\frac{4}{3}\pi \times 3^3 = 36\pi (cm^3)$$

175
$$\frac{256}{3}\pi \text{ cm}^3$$

$$("="되)=\frac{4}{3}\pi \times 4^3 = \frac{256}{3}\pi (\text{cm}^3)$$

$$(\frac{1}{7}] = \frac{1}{2} \times (\frac{4}{3}\pi \times 6^3) = 144\pi (\text{cm}^3)$$

$$(\stackrel{\square}{\vdash} \stackrel{\square}{\exists}) = \frac{3}{4} \times \left(\frac{4}{3}\pi \times 3^3\right) = 27\pi (\text{cm}^3)$$

178 $\frac{28}{3}\pi \text{ cm}^3$

$$(\stackrel{\text{\tiny H}}{=}\stackrel{\text{\tiny J}}{=}) = \frac{7}{8} \times \left(\frac{4}{3}\pi \times 2^3\right) = \frac{28}{3}\pi (\text{cm}^3)$$

주어진 입체도형의 부피는 반지름의 길이가 3 cm인 반구의 부피와 밑면인 원의 반지름의 길이가 3 cm, 높이가 3 cm인 원기둥의 부피의 합과 같으므로

$$(\stackrel{\text{H}}{\neg} \stackrel{\text{II}}{\Rightarrow}) = \frac{1}{2} \times \left(\frac{4}{3}\pi \times 3^3\right) + (\pi \times 3^2) \times 3$$
$$= 18\pi + 27\pi = 45\pi \text{ (cm}^3)$$

(부피)=(반구의 부피)+(원뿔의 부피)
$$=\frac{1}{2} \times \left(\frac{4}{3}\pi \times 3^{3}\right) + \frac{1}{3} \times (\pi \times 3^{2}) \times 4$$
$$=18\pi + 12\pi = 30\pi (\text{cm}^{3})$$

181 \Box 126 π cm³

(부페)=(반구의 부페)×2+(원기둥의 부페)
$$=\left\{\frac{1}{2}\times\left(\frac{4}{3}\pi\times3^{3}\right)\right\}\times2$$
$$=\left\{\frac{1}{2}\times\left(\frac{4}{3}\pi\times3^{3}\right)\right\}\times2+(\pi\times3^{2})\times10$$
$$=36\pi+90\pi=126\pi(cm^{3})$$

1) 밑면인 원의 반지름의 길이가 3 cm, 높이가 6 cm인 워뿜이므로

(원뿔의 부피)=
$$\frac{1}{3} \times (\pi \times 3^2) \times 6 = 18\pi (\text{cm}^3)$$

2) 반지름의 길이가 3 cm인 구이므로

(구의 부피)=
$$\frac{4}{3}\pi \times 3^3 = 36\pi (\text{cm}^3)$$

3) 밑면인 원의 반지름의 길이가 3 cm, 높이가 6 cm인 원기둥이므로

(원기둥의 부피)=
$$(\pi \times 3^2) \times 6 = 54\pi (\text{cm}^3)$$

4) (원뿔의 부피) : (구의 부피) : (원기둥의 부피)

 $=18\pi : 36\pi : 54\pi$ =1:2:3

183 $\frac{4}{3}\pi r^3$

단원 총정리 문제 Ⅷ입체도형

pp. 130~131

01 기, ㄴ, ㅂ **02** 35 **03** ② **04**

05 ②, ⑤ **06** ③ **07** 5 cm **08** ①

10 \oplus **11** \oplus **11** \oplus **16** \oplus **17** \oplus **19** \oplus **19** \oplus **10** \oplus **19** \oplus **19** \oplus **10** \oplus **10** \oplus **10** \oplus **10** \oplus **10** \oplus **11** \oplus **10** \oplus **1**

12 ④ 13 100π cm³ 14 ② 15 겉넓이: 33π cm², 부피: 30π cm³

01 답 ㄱ, ㄴ, ㅂ

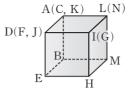
[보기]에 주어진 다면체의 면의 개수는 다음과 같다.

고. 6개 나. 6개 다. 5개 리. 7개 다. 5개 비. 6개 따라서 육면체인 것은 그. 나. 비이다.

02 달 35

오각기둥의 면의 개수는 7개, 팔각뿔의 모서리의 개수는 16개, 육각뿔대의 꼭짓점의 개수는 12개이므로

$$a=7, b=16, c=12$$


$$a+b+c=7+16+12=35$$

03 월 ②

② 정팔면체의 면의 모양은 정삼각형이다.

04 🖶 5

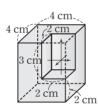
주어진 전개도로 만들어지는 정육면체는 오른쪽 그림과 같으므로 선택지 중 \overline{BC} 와 \overline{DC} 의 있는 모서리는

⑤ <u>T</u>]이다

05 🖺 2, 5

- ① 구의 회전축은 무수히 많다.
- ③ 원뿔을 회전축을 포함하는 평면으로 자를 때 생기는 단 면은 이등변삼각형이다.
- ④ 회전체를 회전축을 포함하는 평면으로 자를 때 생기는 단면은 모두 선대청도형이고 합동이다.

06 ₽ 3


07 🖹 5 cm

원기둥의 전개도에서 옆면의 가로의 길이는 밑면인 원의 둘레의 길이와 같으므로 밑면인 원의 반지름의 길이를 $r \, \mathrm{cm}$ 라고 하면

$$2\pi \times r = 10\pi$$
 $\therefore r = 5$

08 目 ①

잘라낸 부분의 단면을 그림과 같이 이동하여 생각하면 주어진 입체도형 의 겉넓이는 잘라내기 전의 직육면 체의 겉넓이와 같다.

∴ (겉넓이)

$$= (4 \times 4) \times 2 + (4 + 4 + 4 + 4) \times 5$$
$$= 32 + 80 = 112 \text{ (cm}^2)$$

09 🖹 60 cm³

$$(\stackrel{\text{H}}{\neg} \stackrel{\text{J}}{\neg}) = \left\{ \frac{1}{2} \times (4+8) \times 2 \right\} \times 5$$
$$= 60 \text{ (cm}^3)$$

10 🖺 4

(밑넓이)=
$$\pi \times 9^2 \times \frac{120}{360} = 27\pi (\text{cm}^2)$$

(옆넓이)= $\left(2\pi \times 9 \times \frac{120}{360} + 9 + 9\right) \times 7$
= $(6\pi + 18) \times 7 = 42\pi + 126 (\text{cm}^2)$
 \therefore (겉넓이)= $27\pi \times 2 + 42\pi + 126$
= $96\pi + 126 (\text{cm}^2)$

11 \Box 160 π cm³

(밑넓이)= $\pi \times 5^2 - \pi \times 3^2 = 16\pi (\text{cm}^2)$ \therefore (부피)= $16\pi \times 10 = 160\pi (\text{cm}^3)$

[다른 풀이]

(부피)=(큰 원기둥의 부피)-(작은 원기둥의 부피) $=(\pi \times 5^2) \times 10 - (\pi \times 3^2) \times 10$ $=250\pi - 90\pi$

12 🖺 ④

(부회)=
$$\frac{1}{3}$$
×(6×4)×8 $-\frac{1}{3}$ ×(3×2)×4
=64 $-$ 8=56(cm³)

13 \Box 100 π cm³

밑면인 원의 반지름의 길이를 γ cm라고 하면

(옆넓이)=
$$\frac{1}{2} \times 13 \times 2\pi r = 65\pi$$

 $=160\pi (cm^3)$

$$13r = 65$$
 $\therefore r = 5$

$$\therefore (+ \overline{y}) = \frac{1}{3} \times (\pi \times 5^2) \times 12 = 100\pi (\text{cm}^3)$$

14 달 ②

반지름의 길이가 4 cm, 2 cm인 구의 겉넓이는 각각 $4\pi \times 4^2 = 64\pi (\text{cm}^2)$

$$4\pi \times 2^2 = 16\pi (\text{cm}^2)$$

따라서 반지름의 길이가 4 cm인 구의 겉넓이는 반지름의 길이가 2 cm인 구의 겉넓이의 $64\pi\div 16\pi=4(\text{iii})$ 이다.

15 답 겉넓이: 33π cm², 부피: 30π cm³

주어진 평면도형을 직선 l을 회전축으로 하여 1회전 시켰을 때 생기는 입체도형은 오른쪽 그림과 같다.

(겉넓이)

=(원뿔의 옆넓이)+(반구의 겉넓이)

$$= \frac{1}{2} \times 5 \times (2\pi \times 3) + \frac{1}{2} \times (4\pi \times 3^2)$$

 $=15\pi+18\pi=33\pi(\text{cm}^2)$

(부피)

=(원뿔의 부피)+(반구의 부피)

$$=\frac{1}{3}\times(\pi\times3^2)\times4+\frac{1}{2}\times\left(\frac{4}{3}\pi\times3^3\right)$$

 $=12\pi+18\pi=30\pi$ (cm³)

VIII

자료의 정리와 해석

Ⅷ -1 줄기와 잎 그림, 도수분포표 pp. 136~159

01 답

국어 점수

(5|2는 52점)

줄기	잎
5	2 3 7
6	4 9
7	1 2 5 6 7 9
8	2 4 5 8
9	5

02 답

자두의 무게

(3|4는 34g)

줄기	잎
3	4 6
4	0 3 5 7 7
5	1 5 5 9
6	2 3 4 7 8

03 🖺

줄넘기 횟수

(3|1은 31회)

줄기	잎					
3	1	5	5	6	8	9
4	0	1	3	4		
5	4	5	5			
6	0	0	4			

04 달 1) 20명 2) 6명

- 전체 잎의 수는 6+7+5+2=20(개)
 따라서 수현이네 반 여학생은 모두 20명이다.
- 2) 수학 점수가 75점 이상 86점 이하인 여학생은 77점, 78점, 81점, 84점, 85점, 86점의 6명이다.

05 달 1) 19명 2) 5명

- 전체 잎의 수는 8+7+3+1=19(개)
 따라서 민호네 반 남학생은 모두 19명이다.
- 2) 통학 시간이 25분 이상 36분 이하인 남학생은 25분, 27분, 29분, 31분, 33분의 5명이다.

06 달 1) 15명 2) 4명

- 전체 잎의 수는 7+5+3=15(개)
 따라서 영진이네 반 남학생은 모두 15명이다.
- 2) 턱걸이 횟수가 10회 이상 15회 이하인 남학생은 12회, 13회, 14회, 14회의 4명이다.

07 달 1) 30명 2) 7명

- 1) 전체 잎의 수는 9+9+7+5=30(개) 따라서 지수네 반 학생은 모두 30명이다.
- 2) 독서량이 7권 이하인 학생은 2권, 3권, 3권, 4권, 5권, 7권, 7권의 7명이다.

08 (1) (3) (2) (0) (0) (2) (5) (9) (9)

1) 줄기가 3인 잎의 수가 8개로 가장 많다.

09 🖹 1) 5 2) 0, 1, 2, 4, 6, 7, 9

1) 줄기가 5인 잎의 수가 5개로 가장 적다.

10 🖹 1) 2 2) 1, 2, 4, 5, 8

1) 줄기가 2인 잎의 수가 7개로 가장 많다.

11 (a) 1) 7 2) 0, 0, 7, 9

1) 줄기가 7인 잎의 수가 3개로 가장 적다.

12 답 31점

음악 점수가 가장 높은 학생의 점수는 92점, 가장 낮은 학생의 점수는 61점이므로 구하는 음악 점수의 차는 92-61=31(점)

92-61-31(全

13 답 35분

통학 시간이 가장 긴 학생의 통학 시간은 45분, 가장 짧은 학생의 통학 시간은 10분이므로 구하는 통학 시간의 차는 45-10=35(분)

14 답 36시간

봉사 활동 시간이 가장 긴 학생의 봉사 활동 시간은 47시 간, 가장 짧은 학생의 봉사 활동 시간은 11시간이므로 구 하는 봉사 활동 시간의 차는

47-11=36(시간)

15 달 68살

가장 나이가 많은 사람의 나이는 69살, 가장 나이가 적은 사람의 나이는 1살이므로 구하는 나이의 차는

69-1=68(살)

16 달 35권

독서량이 가장 많은 학생의 독서량은 38권, 가장 적은 학생의 독서량은 3권이므로 구하는 독서량의 차는 38-3=35(권)

17 답 줄기와 잎 그림, 줄기, 잎

1	8	담

)	몸무게(kg)	도수	-(명)
	40° l상 \sim $45^{미만}$	///	3
	$45 \sim 50$	/	1
	$50 \sim 55$	//	2
	55 ~60	////	4
	합계	1	0

- (1) 변량이 40 이상 45 미만인 자료는 40, 42, 43의 3개이다.
- (2) 변량이 45 이상 50 미만인 자료는 48의 1개이다.
- (3) 변량이 50 이상 55 미만인 자료는 51, 52의 2개이다.
- (4) 변량이 55 이상 60 미만인 자료는 56, 57, 58, 59의 4개이다.

19 🖺

과학 점수(점)	도수	(명)
40° l상 $\sim~50^{ m 미만}$	/	1
50 ~ 60	//	2
60 ~ 70	//	2
70 ~ 80	//	2
80 ~ 90	///	3
90 ~100	//	2
합계	1	2

20 달

독서량(권)	도수	(명)
0 이상 ~ 5 미만	///	3
5 ~10	W //	7
10 ~15	////	4
$15 \sim 20$	//	2
합계	1	6

21 달 -

통학 시간(분)	도수(명)
10 이상 \sim 15 미만	2
15 ~ 20	1
$20 \sim 25$	3
$25 \sim 30$	3
$30 \sim 35$	3
$35 \sim 40$	4
합계	16

₹ (cm)	도수(명)
155 ^{이상} ~160 ^{미만}	2
$160 \sim 165$	4
$165 \sim 170$	1
$170 \sim 175$	2
175 \sim 180	4
180 ~185	2
합계	15

- **23 □** 1) ∟ 2) ≥ 3) □ 4) ¬
- **24** 달 60점 이상 70점 미만
- 25 달 3시간 이상 4시간 미만
- 26 달 290타 이상 310타 미만

27 🖺 1℃

계급의 크기는 각 계급의 양 끝값의 차이므로 $14-13=1(^{\circ}\mathrm{C})$

28 달 4회

(계급의 크기)=4-0=4(회)

29 🖹 5 kg

(계급의 크기)=45-40=5(kg)

30 🖹 5 cm

(계급의 크기)=145-140=5(cm)

31 달 10점

(계급의 크기)=60-50=10(점)

32 달 2시간

(계급의 크기)=2-0=2(시간)

33 달

수행평가 점수(점)	도수(명)
$0^{\circ \circ \circ} \sim 10^{^{\square \mid \stackrel{\sim}{U}}}$	3
10 ~20	8
20 ~30	10
$30 \sim 40$	2
40 ~50	2
합계	25

도수의 총합은 3+8+10+2+2=25(명)

34 ₺

턱걸이 기록(회)	도수(명)
0 이상 $\sim~4$ 미만	6
4 ~ 8	7
8 ~12	4
12 ~16	2
16 ~20	1
합계	20

도수의 총합은

6+7+4+2+1=20(명)

35 ₺

휴대전화 통화 시간(분)	도수(명)
0 이상 ~ 10 미만	8
10 ~20	2
20 ~30	9
30 ~40	6
40 ~50	3
50 ~60	2
합계	30

도수의 총합은

8+2+9+6+3+2=30(명)

36 ₺

줄넘기 횟수(회)	도수(명)
30° ^{ਨ੍ਹੇ} ∼40 ^{□ ਦੁ}	2
40 ~50	8
50 ~60	15
60 ~70	3
70 ~80	2
합계	30

도수의 총합은

2+8+15+3+2=30(명)

37 ₺

도수의 총합은

6+8+12+10+4=40(명)

38 달

회원의 나이(살)	도수(명)
10° l상 \sim 1 5 미만	7
$15 \sim 20$	11
$20 \sim 25$	10
$25 \sim 30$	13
$30 \sim 35$	9
합계	50

도수의 총합은

7+11+10+13+9=50(명)

39 🖺 3

도수의 총합이 20일이므로

A = 20 - (7 + 5 + 4 + 1) = 20 - 17 = 3

40 🖺 2

도수의 총합이 20명이므로

A = 20 - (1 + 2 + 10 + 5) = 20 - 18 = 2

41 🖺 6

도수의 총합이 30명이므로

 $A\!=\!30\!-\!(3\!+\!4\!+\!10\!+\!5\!+\!2)\!=\!30\!-\!24\!=\!6$

42 달 4

도수의 총합이 30명이므로

A = 30 - (2 + 3 + 6 + 6 + 9) = 30 - 26 = 4

43 🖺 4

도수의 총합이 40명이므로

A = 40 - (2 + 10 + 14 + 8 + 2) = 40 - 36 = 4

44 🖺 6

도수의 총합이 50명이므로

A = 50 - (4+8+9+15+8) = 50-44=6

45 달 1) 7명 2) 35 % 3) 1명 4) 5 %

5) 5명 6) 25% 7) 10명 8) 50%

2) 전체 학생 수는 20명이고, 운동 시간이 4시간 이상 6시간 미만인 학생 수는 7명이므로

 $\frac{7}{20} \times 100 = 35(\%)$

4) 전체 학생 수는 20명이고, 운동 시간이 10시간 이상 12시간 미만인 학생 수는 1명이므로

 $\frac{1}{20} \times 100 = 5(\%)$

- 5) 운동 시간이 8시간 이상 10시간 미만인 학생이 4명, 10시간 이상 12시간 미만인 학생이 1명이므로 운동 시 간이 8시간 이상인 학생 수는 4+1=5(명)이다.
- 6) 전체 학생 수는 20명이고, 운동 시간이 8시간 이상인 학생 수는 5명이므로

$$\frac{5}{20} \times 100 = 25(\%)$$

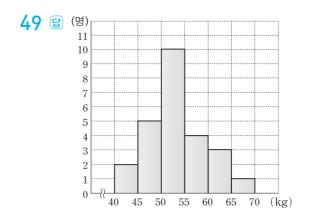
- 7) 운동 시간이 2시간 이상 4시간 미만인 학생이 3명, 4시 간 이상 6시간 미만인 학생이 7명이므로 운동 시간이 6시간 미만인 학생 수는 3+7=10(명)이다.
- 8) 전체 학생 수는 20명이고, 운동 시간이 6시간 미만인 학생 수는 10명이므로

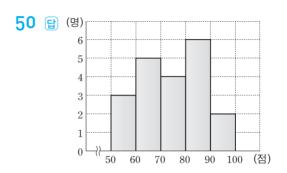
$$\frac{10}{20} \times 100 = 50(\%)$$

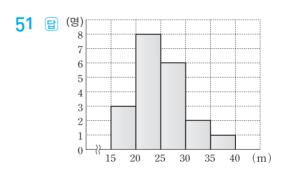
- 46
 답 1) 10점
 2) 5개
 3) 7

 4) 70점 이상 80점 미만
 5) 40 %
 - 1) 계급의 크기는 각 계급의 양 끝값의 차이므로 60-50=10(점)
 - 3) 도수의 총합이 30명이므로 A=30-(4+6+8+5)=7
 - 5) 점수가 80점 이상 90점 미만인 학생은 7명, 90점 이상 100점 미만인 학생은 5명이므로 점수가 80점 이상인 학생 수는 7+5=12(명)이다.

따라서 전체 학생 수는 30명이고, 80점 이상인 학생 수는 12명이므로


$$\frac{12}{30} \times 100 = 40(\%)$$


- 47 달 1) 10회 2) 5개 3) 16 4) 60회 이상 70회 미만 5) 65 %
 - 계급의 크기는 각 계급의 양 끝값의 차이므로 30-20=10(회)
 - 3) 도수의 총합이 40명이므로 $A\!=\!40\!-\!(1\!+\!9\!+\!8\!+\!6)\!=\!16$
 - 5) 줄넘기 횟수가 20회 이상 30회 미만인 학생은 1명, 30회 이상 40회 미만인 학생은 9명, 40회 이상 50회 미만인 학생은 16명이므로 줄넘기 횟수가 50회 미만인 학생 수는 1+9+16=26(명)이다.


따라서 전체 학생 수는 40명이고, 줄넘기 횟수가 50회 미만인 학생 수는 26명이므로

$$\frac{26}{40} \times 100 = 65(\%)$$

48 🖺 계급, 계급의 크기, 도수

52 🖺	감귤의 무게 (g)	도수(개)
	70° l상 \sim $75^{미만}$	3
	75 ~80	4
	80 ~85	8
	85 ~90	7
	90 ~95	3
	합계	25

53 □	독서 시간(시간)	도수(명)
	0 이상 ~ 4 미만	1
	4 ~ 8	4
	8 ~12	7
	12 ~16	5
	16 ~20	3
	합계	20

54 월

영어 점수(점)	도수(명)
70° ^{이상} ~ 75 ^{미만}	4
75 ~ 80	6
80 ~ 85	14
85 ~ 90	8
90 ~ 95	6
95 ~100	2
합계	40

55 🖺

도수(명) 2 4
4
9
6
3
1
25

56 **달** 10 kg

계급의 크기는 각 계급의 양 끝값의 차이므로 $50-40=10(\mathrm{kg})$

57 답 5회

(계급의 크기)=15-10=5(회)

58 **달** 20 m

(계급의 크기)=100-80=20(m)

- 59 (급) 1) 80점 이상 85점 미만 2) 95점 이상 100점 미만 3) 85점 이상 90점 미만 4) 70점 이상 75점 미만 5) 90점 이상 95점 미만
 - 5) 사회 점수가 95점 이상 100점 미만인 학생이 1명, 90점 이상 95점 미만인 학생이 5명이므로 사회 점수가 5번째로 높은 학생이 속하는 계급은 90점 이상 95점 미만이다.
- 60 달 30명

도수의 총합은 2+6+10+8+3+1=30(명)

61 답 40명

도수의 총합은 4+5+9+11+8+3=40(명)

62 달 50명

도수의 총합은 4+14+20+10+2=50(명)

- 63 달 1) 6명 2) 15 % 3) 16명 4) 40 %
 - 2) 전체 학생 수가 40명이고, 국어 성적이 50점 이상 60점 미만인 학생 수가 6명이므로

 $\frac{6}{40} \times 100 = 15(\%)$

- 3) 국어 성적이 70점 이상 80점 미만인 학생이 10명, 80점 이상 90점 미만인 학생이 6명이므로 국어 성적이 70점 이상 90점 미만인 학생 수는 10+6=16(명)이다.
- **4)** 전체 학생 수가 40명이고, 국어 성적이 70점 이상 90점 미만인 학생 수가 16명이므로

 $\frac{16}{40} \times 100 = 40(\%)$

- **64** 달 1) 20명 2) 48 kg 이상 52 kg 미만 3) 6명 4) 20 %
 - 1) 전체 학생 수는 2+6+8+3+1=20(명)
 - 3) 몸무게가 40 kg 이상 44 kg 미만인 학생이 2명, 44 kg 이상 48 kg 미만인 학생이 6명이므로 몸무게가 5번째 로 가벼운 학생이 속하는 계급은 44 kg 이상 48 kg 미 만이다.

따라서 이 계급의 도수는 6명이다.

4) 몸무게가 52 kg 이상 56 kg 미만인 학생이 3명, 56 kg 이상 60 kg 미만인 학생이 1명이므로 몸무게가 52 kg 이상인 학생 수는 3+1=4(명)이다.

따라서 전체 학생 수가 20명이므로

 $\frac{4}{20} \times 100 = 20(\%)$

- 65 답 1) 6명 2) 12 % 3) 15명 4) 30 %
 - 2) 전체 학생 수가 6+9+15+10+6+4=50(명)이고, 한 달 독서량이 9권 이상 11권 미만인 학생 수가 6명이므로 $\frac{6}{50} \times 100 = 12(\%)$
 - 3) 한 달 독서량이 1권 이상 3권 미만인 학생이 6명, 3권 이상 5권 미만인 학생이 9명이므로 한 달 독서량이 5권 미만인 학생 수는 6+9=15(명)이다.
 - **4)** 전체 학생 수가 50명이고, 한 달 독서량이 5권 미만인 학생 수가 15명이므로

 $\frac{15}{50} \times 100 = 30(\%)$

66 🖺 가로, 도수, 직사각형

67 日 1) 12 2) 60 3) 3배

1) 계급의 크기가 2시간이고 도수는 6명이므로 (직사각형의 넓이)=(계급의 크기) \times (계급의 도수) $=2\times 6=12$

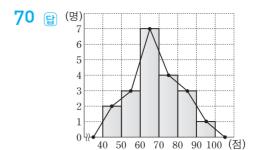
 $=2\times30=60$

2) (직사각형의 넓이의 합)=(계급의 크기) \times (도수의 총합) $=2\times(4+6+8+9+3)$

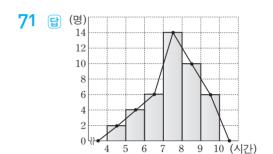
또한, 도수가 가장 작은 계급의 도수는 3명이므로 도수가 가장 작은 계급의 직사각형의 넓이는 $2\times3=6$ 따라서 도수가 가장 큰 계급의 직사각형의 넓이는 도수가 가장 작은 계급의 직사각형의 넓이의 $\frac{18}{6}=3$ (배)이다.

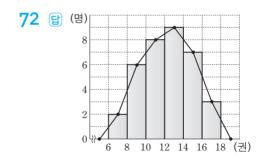
[다른 풀이]

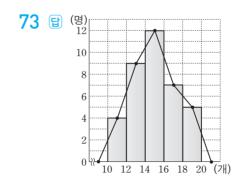
각 직사각형의 넓이는 각 계급의 도수에 정비례한다. 도수가 가장 큰 계급의 도수가 9명, 도수가 가장 작은 계급의 도수가 3명이므로 도수가 가장 큰 계급의 직사각형의 넓이는 도수가 가장 작은 계급의 직사각형의 넓이의 $\frac{9}{3}$ =3(배)이다.

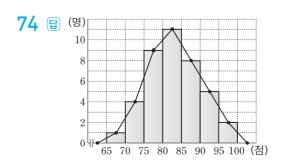

68 目 1) 120 2) 400 3) 2배

- 1) 계급의 크기는 10점, 도수가 가장 큰 계급의 도수는 12명 이므로 도수가 가장 큰 계급의 직사각형의 넓이는 10×12=120
- 2) (직사각형의 넓이의 합)=(계급의 크기)imes(도수의 총합) =10 imes (2+5+9+12+8+4) =10 imes 40=400
- 3) 점수가 가장 높은 학생이 속한 계급은 90점 이상 100점 미만이므로 이 계급의 직사각형의 넓이는 10×4=40 점수가 가장 낮은 학생이 속한 계급은 40점 이상 50점 미만이므로 이 계급의 직사각형의 넓이는 10×2=20
 ∴ 40/20=2(배)


[다른 풀이]

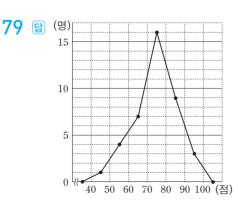

각 직사각형의 넓이는 각 계급의 도수에 정비례한다. 90점 이상 100점 미만인 계급의 도수는 4명, 40점 이상 50점 미만인 계급의 도수는 2명이므로 $\frac{4}{2}$ =2(배)이다.


69 달 크기, 도수



히스토그램의 양 끝에 도수가 0인 계급을 하나씩 추가하여 그 중점과 각 직사각형의 중점을 모두 연결한다.

75 🖹 (개) 12 10 8 6 50 60 70 80 90 100 (g)


76 달

몸무게(kg)	도수(명)
30 ^{° 상} ∼35 ^{미만}	2
35 ~40	5
40 ~45	10
45 ~50	7
50 ~55	1
합계	25

77 답

봉사 활동 시간(시간)	도수(명)
3 ^{이상} ~ 5 ^{미만}	5
5 ~ 7	8
7 ~ 9	10
9 ~11	7
11 ~13	3
13 ~15	2
합계	35

78 답 (명) 6 4 2 6 8 10 12 (회)

80 답 2시간

계급의 크기는 각 계급의 양 끝값의 차이므로 $4-2=2(\lambda)(7)$

81 탑 30분

(계급의 크기)=60-30=30(분)

82 답 4살

(계급의 크기)=38-34=4(살)

- 83 달 1) 60 kg 이상 65 kg 미만
 - 2) 40 kg 이상 45 kg 미만
 - 3) 30 kg 이상 35 kg 미만, 55 kg 이상 60 kg 미만
 - 4) 50 kg 이상 55 kg 미만
 - 5) 35 kg 이상 40 kg 미만
 - **1)** 가장 작은 도수는 2명이다.
 - 3) 30 kg 이상 35 kg 미만인 계급과 55 kg 이상 60 kg 미 만인 계급이 도수가 3으로 같다.
 - 5) 몸무게가 30 kg 이상 35 kg 미만인 학생은 3명, 35 kg 이상 40 kg 미만인 학생은 5명이므로 몸무게가 7번째 로 가벼운 학생은 35 kg 이상 40 kg 미만인 계급에 속 한다.
- 84 달 30명 도수의 총합은 1+5+9+8+4+3=30(명)
- 85 달 23명 도수의 총합은 2+3+4+8+6=23(명)
- 86 달 40명 도수의 총합은 1+4+7+16+9+3=40(명)
- 87 달 1) 9명 2) 30 % 3) 6명 4) 20 %
 - 2) 전체 학생 수가 30명이고, 책 대여 수가 14권 이상 16권 미만인 학생 수가 9명이므로

 $\frac{9}{30} \times 100 = 30(\%)$

3) 책 대여 수가 18권 이상 20권 미만인 학생은 4명, 20권 이상 22권 미만인 학생은 2명이므로 책 대여 수가 18권 이상 22권 미만인 학생 수는

4+2=6(명)

4) 전체 학생 수가 30명이고. 책 대여 수가 18권 이상 22권 미만인 학생 수가 6명이므로

$$\frac{6}{30} \times 100 = 20(\%)$$

88 달 1) 50명 2) 8명 3) 16% 4) 24명 5) 48%

- 1) 전체 학생 수는 1+5+8+12+15+9=50(명)
- 3) 전체 학생 수가 50명이고, 미술 점수가 60점 이상 70점 미만인 학생 수가 8명이므로

$$\frac{8}{50} \times 100 = 16(\%)$$

- 4) 미술 점수가 80점 이상 90점 미만인 학생이 15명, 90점 이상 100점 미만인 학생이 9명이므로 미술 점수가 80점 이상인 학생 수는 15+9=24(명)이다.
- 5) 전체 학생 수가 50명이고, 미술 점수가 80점 이상인 학생수가 24명이므로

$$\frac{24}{50} \times 100 = 48(\%)$$

89 달 1) 40명 2) 10명 3) 25% 4) 7명

- 1) 전체 학생 수는 3+7+8+12+6+4=40(명)
- 2) 앉은키가 80 cm 이상 85 cm 미만인 학생은 6명, 85 cm 이상 90 cm 미만인 학생은 4명이므로 앉은키가 80 cm 이상인 학생 수는 6+4=10(명)이다.
- **3)** 전체 학생 수가 40명이고, 앉은키가 80 cm 이상인 학생 수가 10명이므로

$$\frac{10}{40} \times 100 = 25(\%)$$

4) 앉은키가 60 cm 이상 65 cm 미만인 학생이 3명, 65 cm 이상 70 cm 미만인 학생이 7명이므로 앉은키가 6번째로 작은 학생이 속하는 계급은 65 cm 이상 70 cm 미만이고 이 계급의 도수는 7명이다.

90 달 중앙, 0, 도수분포다각형

91 달 210

(도수분포다각형과 가로축으로 둘러싸인 부분의 넓이)

- =(히스토그램의 직사각형의 넓이의 합)
- =(계급의 크기)×(도수의 총합)
- $=5 \times (4+10+14+9+5)=5 \times 42=210$

92 달 64

(도수분포다각형과 가로축으로 둘러싸인 부분의 넓이)= $2 \times (1+6+12+10+3)=2 \times 32=64$

93 目 100

(도수분포다각형과 가로축으로 둘러싸인 부분의 넓이)= $4 \times (3+10+7+4+1)=4 \times 25=100$

94 달 350

(도수분포다각형과 가로축으로 둘러싸인 부분의 넓이)= $10 \times (4+7+11+9+4)=10 \times 35=350$

95 달 70

(도수분포다각형과 가로축으로 둘러싸인 부분의 넓이)= $2 \times (1+3+6+7+9+5+4)=2 \times 35=70$

96 달 1) 10점, 6개 2) 30명 3) 4명 4) 30% 5) 300

- 2) 전체 학생 수는 1+2+7+10+6+4=30(9)
- 3) 영어 성적이 가장 좋은 학생이 속하는 계급은 90점 이상 100점 미만이므로 이 계급의 도수는 4명이다.
- 4) 영어 성적이 50점 이상 60점 미만인 학생이 2명, 60점 이상 70점 미만인 학생이 7명이므로 영어 성적이 50점 이상 70점 미만인 학생 수는 2+7=9(명)이다.
 따라서 전체 학생 수가 30명이고, 영어 성적이 50점 이상 70점 미만인 학생 수가 9명이므로

$$\frac{9}{30} \times 100 = 30(\%)$$

5) (구하는 넓이)=(계급의 크기)×(도수의 총합) =10×30=300

97 🖹 1) 160 cm 이상 165 cm 미만 2) 40명 3) 155 cm 이상 160 cm 미만

4) 25 % 5) 200

- 1) 160 cm 이상 165 cm 미만인 계급의 도수가 3명으로 가장 작다.
- 2) (전체 학생 수)=4+6+9+11+7+3=40(명)
- 3) 키가 160 cm 이상 165 cm 미만인 학생이 3명, 155 cm 이상 160 cm 미만인 학생이 7명이므로 키가 9번째로 큰 학생이 속하는 계급은 155 cm 이상 160 cm 미만이다.
- 4) 키가 135 cm 이상 140 cm 미만인 학생이 4명, 140 cm 이상 145 cm 미만인 학생이 6명이므로 키가 145 cm 미만인 학생 수는 4+6=10(명)이다. 따라서 전체 학생 수가 40명이고, 키가 145 cm 미만인 학생 수가 10명이므로

$$\frac{10}{40} \times 100 = 25(\%)$$

5) (구하는 넓이)=(계급의 크기)×(도수의 총합) =5×40=200

98 달 도수분포다각형, 직사각형

Ⅷ -2 상대도수

pp. 160~167

- 99 🖺 0.36
- 100 🖺 0.2
- 101 🖺 0.31
- 102 \bigcirc 0.45 $\frac{18}{40}$ = 0.45
- **103** 탑 × 상대도수의 총합은 항상 1이다.
- **104** 달 × 상대도수는 0 이상이고 1 이하이다.
- 105 월 ○
- 106 월 ○
- 107 달

수학 점수(점)	도수(명)	상대도수
50 ^{이상} ~ 60 ^{미만}	1	$\frac{1}{20}$ = 0.05
60 ~ 70	4	$\frac{4}{20} = 0.2$
70 ~ 80	8	$\frac{8}{20} = 0.4$
80 ~ 90	5	$\frac{5}{20}$ = 0.25
90 ~100	2	$\frac{2}{20}$ = 0.1
 합계	20	1

108 달

용돈(만 원)	도수(명)	상대도수
2 ^{이상} $\sim~4$ ^{미만}	8	0.2
4 ~ 6	12	0,3
6 ~ 8	14	0,35
8 ~10	6	0,15
합계	40	1

$$\frac{12}{40}$$
=0.3, $\frac{14}{40}$ =0.35, $\frac{6}{40}$ =0.15

109 달

윗몸일으키기 횟수(회)	도수(명)	상대도수
0 이상~15 미만	2	0.05
15 ~30	6	0.15
30 ~45	18	0.45
45 ~60	10	0.25
60 ~75	4	0.1
합계	40	1

$$\frac{2}{40}$$
=0.05, $\frac{6}{40}$ =0.15, $\frac{18}{40}$ =0.45
 $\frac{10}{40}$ =0.25, $\frac{4}{40}$ =0.1

110 달

줄넘기 횟수(회)	도수(명)	상대도수
0 이상 $\sim~20$ 미만	$25 \times 0.08 = 2$	0.08
$20 \sim 40$	$25 \times 0.12 = 3$	0.12
40 ~ 60	$25 \times 0.4 = 10$	0.4
60 ~ 80	$25 \times 0.24 = 6$	0.24
80 ~100	25×0.16=4	0.16
합계	25	1

111 답

독서 시간(시간)	도수(명)	상대도수	
0 이상 $\sim~4$ 미만	3	0.075	
4 ~ 8	6	0.15	
8 ~12	12	0.3	
12 ~16	10	0.25	
16 ~20	5	0.125	
20 ~24	4	0.1	
합계	40	1	

 $40 \times 0.15 = 6$, $40 \times 0.3 = 12$, $40 \times 0.25 = 10$ $40 \times 0.125 = 5$, $40 \times 0.1 = 4$

112 달

관객의 나이(세)	도수(명)	상대도수	
15 ^{이상} ~20 ^{미만}	25	0.125	
20 ~25	42	0.21	
25 ~30	70	0.35	
30 ~35	36	0.18	
$35 \sim 40$	18	0.09	
40 ~45	9	0.045	
합계	200	1	

 $200 \times 0.125 = 25$, $200 \times 0.21 = 42$, $200 \times 0.35 = 70$ $200 \times 0.18 = 36$, $200 \times 0.09 = 18$, $200 \times 0.045 = 9$

113 皆 1

상대도수의 총합은 항상 1이다.

114 달 1

115 답 1

116 1 1 20 % 2 55 % 3 35 %

1) 몸무게가 45 kg 이상 50 kg 미만인 계급의 상대도수 가 0.2이므로

 $0.2 \times 100 = 20(\%)$

2) 몸무게가 50 kg 이상 55 kg 미만인 계급의 상대도수는 는 0.3, 55 kg 이상 60 kg 미만인 계급의 상대도수는 0.15, 60 kg 이상 65 kg 미만인 계급의 상대도수는 0.1이므로 몸무게가 50 kg 이상 65 kg 미만인 계급의 상대도수의 합은 0.3+0.15+0.1=0.55이다.

따라서 몸무게가 50 kg 이상 65 kg 미만인 학생은 전체의 $0.55 \times 100 = 55(\%)$ 이다.

3) 몸무게가 40 kg 이상 45 kg 미만인 계급의 상대도수는 0.15, 45 kg 이상 50 kg 미만인 계급의 상대도수는 0.2이므로 몸무게가 50 kg 미만인 계급의 상대도수의 합은 0.15+0.2=0.35이다.

따라서 몸무게가 50 kg 미만인 학생은 전체의 $0.35 \times 100 = 35(\%)$ 이다.

A = 11 + 18 + 13 + 8 = 50

$$B = \frac{11}{50} = 0.22$$

118 \Box A=40, B=0.35

A = 3 + 9 + 10 + 13 + 5 = 40

$$B = \frac{13}{40} = 0.325$$

119 \Box A=5, B=0.25

A=20-(3+8+1+3)=5

$$B = \frac{5}{20} = 0.25$$

120 답 40명

운동 시간이 1시간 이상 2시간 미만인 계급의 도수는 6명이고, 상대도수는 0.15이므로

(도수의 총합)=
$$\frac{(그 제급의 도수)}{(어떤 제급의 상대도수)} = \frac{6}{0.15} = 40(명)$$

121 달 32개

무게가 $200 \, \mathrm{g}$ 이상 $210 \, \mathrm{g}$ 미만인 계급의 도수는 8개, 상대도수는 0.25이므로 (도수의 총합)= $\frac{8}{0.25}$ =32(개)

122 답 50명

TV 시청 시간이 35분 이상 40분 미만인 계급의 도수는 3명, 상대도수는 0.06이므로

(도수의 총합)=
$$\frac{3}{0.06}$$
=50(명)

123 (a) 1) 100 2) 6 3) 0,35 4) 23 5) 21

1) 키가 130 cm 이상 140 cm 미만인 계급의 도수가 15명, 상대도수가 0.15이므로

$$E = \frac{15}{0.15} = 100$$

2) 키가 120 cm 이상 130 cm 미만인 계급의 상대도수가 0.06, 도수의 총합이 100명이므로

$$A = 100 \times 0.06 = 6$$

3) 키가 140 cm 이상 150 cm 미만인 계급의 도수가 35명, 도수의 총합이 100명이므로

$$B = \frac{35}{100} = 0.35$$

4) 키가 150 cm 이상 160 cm 미만인 계급의 상대도수가 0.23, 도수의 총합이 100명이므로

$$C = 100 \times 0.23 = 23$$

5) D=100-(6+15+35+23)=21

124 (a) 1) 0,1 2) 20 3) 3 4) 11 5) 4

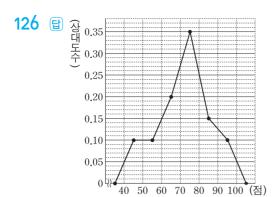
1) 상대도수의 총합은 항상 1이므로 A=1-(0.15+0.55+0.2)=0.1

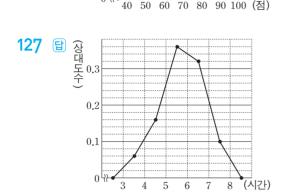
2) 평균 운동 시간이 0시간 이상 2시간 미만인 계급의 도수가 2명. 상대도수가 0.1이므로

$$E = \frac{2}{0.1} = 20$$

3) 평균 운동 시간이 2시간 이상 4시간 미만인 계급의 상 대도수가 0.15, 도수의 총합이 20명이므로

$$B = 20 \times 0.15 = 3$$


4) 평균 운동 시간이 4시간 이상 6시간 미만인 계급의 상대도수가 0.55. 도수의 총합이 20명이므로


$$C = 20 \times 0.55 = 11$$

5) 평균 운동 시간이 6시간 이상 8시간 미만인 계급의 상 대도수가 0.2, 도수의 총합이 20명이므로

$$D=20\times0.2=4$$

125 답 상대도수, 도수, 1

상대도수의 총합은 항상 1이므로 4시간 이상 5시간 미 만인 계급의 상대도수는

1 - (0.06 + 0.36 + 0.32 + 0.1) = 0.16

128 달 1) 16% 2) 6명 3) 20% 4) 18명

1) 줄넘기 횟수가 30회 이상 40회 미만인 계급의 상대도 수가 0.16이므로

 $0.16 \times 100 = 16(\%)$

- 2) 줄넘기 횟수가 20회 이상 30회 미만인 계급의 상대도 수가 0.12. 도수의 총합이 50명이므로 줄넘기 횟수가 20회 이상 30회 미만인 학생 수는 50×0.12=6(명) 이다
- 3) 줄넘기 횟수가 60회 이상 70회 미만인 계급의 상대도 수가 0.12, 70회 이상 80회 미만인 계급의 상대도수가 0.08이므로 줄넘기 횟수가 60회 이상인 계급의 상대도 수의 합은

0.12 + 0.08 = 0.2

따라서 줄넘기 횟수가 60회 이상인 학생은 전체의 0.2×100=20(%)이다.

4) 줄넘기 횟수가 50회 이상 60회 미만인 계급의 상대도 수가 0.24, 60회 이상 70회 미만인 계급의 상대도수 가 0.12이므로 줄넘기 횟수가 50회 이상 70회 미만인 계급의 상대도수의 합은

0.24 + 0.12 = 036

따라서 줄넘기 횟수가 50회 이상 70회 미만인 학생 수 는 50×0.36=18(명)이다.

129 답 1) 100명 2) 12명 3) 54% 4) 14명

1) 몸무게가 50 kg 이상 55 kg 미만인 계급의 상대도수 가 0.2이고. 도수가 20명이므로

(전체 학생 수)=
$$\frac{20}{0.2}$$
=100(명)

2) 상대도수는 도수에 정비례하므로 도수가 3번째로 작 은 계급은 상대도수가 3번째로 작은 계급인 35 kg 이 상 45 kg 미만이다.

따라서 이 계급의 도수는 $100 \times 0.12 = 12(명)$ 이다.

- 3) 몸무게가 40 kg 이상 45 kg 미만인 계급의 상대도수 는 0.24, 45 kg 이상 50 kg 미만인 계급의 상대도수는 0.3이므로 몸무게가 40 kg 이상 50 kg 미만인 계급의 상대도수의 합은 0.24+0.3=0.54 따라서 몸무게가 40 kg 이상 50 kg 미만인 학생은 전 체의 0.54×100=54(%)이다.
- 4) 몸무게가 55 kg 이상 60 kg 미만인 계급의 상대도수 가 0.1, 60 kg 이상 65 kg 미만인 계급의 상대도수가 0.04이므로 몸무게가 55 kg 이상인 계급의 상대도수 의 합은 0.1+0.04=0.14 따라서 몸무게가 55 kg 이상인 학생 수는 100×0.14=14(명)이다.

130 답 도수분포다각형, 분포

131 답 1) 해설 참조 2) 60점 이상 70점 미만 3) 1반 4) 2반

1) 수학 성적(점)		1반		2반		
		도수(명)	상대도수	도수(명)	상대도수	
50 ^{੦ੀਨ}	s ^t ~	60미만	2	0.05	3	0.06
60	\sim	70	8	0.2	10	0.2
70	\sim	80	14	0.35	18	0.36
80	\sim	90	10	0.25	12	0.24
90	~]	100	6	0.15	7	0.14
	합기	I	40	1	50	1
	50° 4 60 70 80	50° ⁾ か~ 60 ~ 70 ~ 80 ~ 90 ~1	$50^{\circ 1 \cdot 3} \sim 60^{\circ 12^{\circ}}$ $60 \sim 70$ $70 \sim 80$ $80 \sim 90$	수학 성적(점) 도수(명) 50° ^{1상} ~ 60° ^{미만} 2 60 ~ 70 8 70 ~ 80 14 80 ~ 90 10 90 ~100 6	구학 성적(점) 도수(명) 상대도수 50°% ~ 60° 2 0.05 60 ~ 70 8 0.2 70 ~ 80 14 0.35 80 ~ 90 10 0.25 90 ~ 100 6 0.15	수학 성적(점) 도수(명) 상대도수 도수(명) 50° ^{1상} ~ 60° ^{미만} 2 0.05 3 60 ~ 70 8 0.2 10 70 ~ 80 14 0.35 18 80 ~ 90 10 0.25 12 90 ~100 6 0.15 7

- 3) 수학 점수가 90점 이상 100점 미만인 계급의 상대도수 는 1반이 0.15, 2반이 0.14이므로 90점 이상 100점 미 만인 학생의 비율은 1반이 더 높다.
- 4) 수학 점수가 80점 미만인 계급의 상대도수의 합은

1반: 0.05+0.2+0.35=0.6

2반: 0.06+0.2+0.36=0.62

따라서 80점 미만인 학생의 비율은 2반이 더 높다.

132 달 1) A 중학교: 75명, B 중학교: 40명 2) A 중학교

1) A중학교에서 몸무게가 50 kg 이상 55 kg 미만인 계 급의 상대도수는 0.25이고. 도수의 총합이 300명이므 로 몸무게 50 kg 이상 55 kg 미만인 학생 수는

 $300 \times 0.25 = 75$ (명)

B중학교에서 몸무게가 50 kg 이상 55 kg 미만인 계 급의 상대도수는 0.2이고, 도수의 총합이 200명이므로 몸무게 50 kg 이상 55 kg 미만인 학생 수는 $200 \times 0.2 = 40$ (명)

2) A중학교의 그래프가 B중학교의 그래프보다 오른쪽으 로 치우쳐 있으므로 A중학교 학생이 B중학교 학생보 다 몸무게가 더 무겁다고 할 수 있다.

133 답 상대도수

● 단원 총정리 문제 Ⅷ자료의 정리와 해석)=

01 (1) 3 (2) 46세 (3) 6명 **02** ③ **03** 22

04 5 05 40 % **06 3 07**(1)25명

(2) 24 m 이상 28 m 미만 (3) 72 % (4) 100

08 (1) A=16, B=0.275, C=1 (2) 0.175 (3) 55 %

09 17명 10 ②, ④

01 달 (1) **3** (2) **46**세 (3) **6**명

- (1) 줄기 2에는 잎이 3개. 줄기 3에는 잎이 7개. 줄기 4에는 잎이 6개, 줄기 5에는 잎이 4개이므로 잎이 가장 많은 줄기는 3이다.
- (2) 나이가 많은 쪽에서부터 차례로 나열하면 53세, 52세, 52세, 50세, 49세, 48세, 48세, 46세, …이므로 나이가 많은 쪽에서 8번째인 회원의 나이는 46세이다.
- (3) 35세보다 나이가 적은 회원은 24세, 26세, 29세, 31세, 31세, 33세로 6명이다.

02 量 ③

③ 변량을 나눈 구간의 너비를 계급의 크기라고 한다.

03 달 22

이용 횟수가 4회 이상 8회 미만인 학생이 6명, 8회 이상 12회 미만인 학생이 11명이므로 이용 횟수가 4회 이상 12회 미만인 학생 수는

6+11=17(명) $\therefore a=17$

이용 횟수가 16회 이상 20회 미만인 학생이 3명. 12회 이상 16회 미만인 학생이 5명이므로 이용 횟수가 많은 쪽에서 4번째인 학생이 속하는 계급은 12회 이상 16회 미만이고 이 계급의 도수는 5명이다.

 $\therefore b=5$

a+b=17+5=22

04 🖶 5

- ① 계급의 개수는 4개이다.
- ② 계급의 크기는 10-0=10(분)이다.
- 3A=25-(4+6+8)=7
- ④ 통학 시간이 30분 이상 40분 미만인 학생이 8명. 20분 이상 30분 미만인 학생이 7명이므로 통학 시간이 긴 쪽 에서 10번째인 학생이 속하는 계급은 20분 이상 30분 미만이고 이 계급의 도수는 7명이다.
- ⑤ 통학 시간이 0분 이상 10분 미만인 학생이 4명, 10분 이상 20분 미만인 학생이 6명, 20분 이상 30분 미만인 학생이 7명이므로 통학 시간이 30분 미만인 학생 수는 4+6+7=17(명)

$$\therefore \frac{17}{25} \times 100 = 68(\%)$$

05 🖺 40 %

A = 40 - (11 + 13 + 4) = 12

몸무게가 45 kg 이상 55 kg 미만인 학생이 12명, 55 kg 이상 65 kg 미만인 학생이 4명이므로 몸무게가 45 kg 이 상인 학생 수는 12+4=16(명)이다.

따라서 전체 학생 수가 40명이고, 몸무게가 45 kg 이상인 학생 수가 16명이므로 $\frac{16}{40} \times 100 = 40(\%)$

06 閏 ③

- ② (전체 학생 수)=2+5+7+9+7=30(명)
- ③ 독서 시간이 가장 많은 학생의 독서 시간은 알 수 없다.
- ④ 독서 시간이 0시간 이상 2시간 미만인 학생이 2명, 2시 간 이상 4시간 미만인 학생이 5명이므로 독서 시간이 4시간 미만인 학생 수는 2+5=7(명)이다.
- ⑤ (직사각형의 넓이의 합)=(계급의 크기)×(도수의 총합)

 $=2\times30=60$

07 달 (1) 25명 (2) 24 m 이상 28 m 미만 (3) 72 % (4) 100

- (1) (전체 학생 수)=5+9+6+3+2=25(명)
- (2) 던지기 기록이 20 m 이상 24 m 미만인 학생이 5명. 24 m 이상 28 m 미만인 학생이 9명이므로 던지기 기 록이 낮은 쪽에서 7번째인 학생이 속하는 계급은 24 m 이상 28 m 미만이다
- (3) 던지기 기록이 24 m 이상 28 m 미만인 학생이 9명. 28 m 이상 32 m 미만인 학생이 6명. 32 m 이상 36 m 미만인 학생이 3명이므로 던지기 기록이 24 m 이상 36 m 미만인 학생 수는 9+6+3=18(명)이다. 따라서 전체 학생 수가 25명이고. 던지기 기록이 24 m 이상 36 m 미만인 학생 수가 18명이므로

 $=4 \times 25 = 100$

08 (1) A=16, B=0.275, C=1 (2) 0.175 (3) 55%

(1) (전체 학생 수)= $\frac{2}{0.05}$ =40(명)

 $A = 40 \times 0.4 = 16$

 $\frac{18}{25} \times 100 = 72(\%)$

$$B = \frac{11}{40} = 0.275$$

상대도수의 총합은 항상 1이므로 C=1

- (2) 윗몸일으키기 횟수가 48회인 학생이 속하는 계급은 40회 이상 50회 미만이므로 이 계급의 상대도수는 $\frac{7}{40}$ =0.175
- ③ 윗몸일으키기 횟수가 10회 이상 20회 미만인 계급의 상대도수는 $\frac{4}{40}$ =0.1

따라서 윗몸일으키기 횟수가 30회 미만인 계급의 상대 도수의 합은

0.05+0.1+0.4=0.55

 $0.55 \times 100 = 55(\%)$

[다른 풀이]

윗몸일으키기 횟수가 30회 미만인 학생 수는 2+4+16=22(명)

 $\therefore \frac{22}{40} \times 100 = 55(\%)$

09 달 17명

봉사 활동 시간이 10시간 이상 15시간 미만인 계급의 상대 도수가 0.24이므로

(전체 학생 수)=
$$\frac{12}{0.24}$$
=50(명)

봉사 활동 시간이 20시간 이상 25시간 미만인 계급의 상대 도수가 0.22. 25시간 이상 30시간 미만인 계급의 상대도수 가 0.12이므로 봉사 활동 시간이 20시간 이상인 계급의 상 대도수의 합은 0.22+0.12=0.34

따라서 전체 학생 수가 50명이므로 봉사 활동 시간이 20시 간 이상인 학생 수는

50×0.34=17(명)

10 🖹 2.4

① 남학생과 여학생의 영어 점수가 60점 미만인 계급의 상대도수의 합을 각각 구하면

남학생: 0.08+0.3=0.38

여학생: 0.04+0.12=0.16

따라서 영어 점수가 60점 미만인 학생의 비율은 남학생 이 더 높다.

② 영어 점수가 70점 이상 80점 미만인 학생 수는

남학생: 150×0.22=33(명) 여학생: 100×0.28=28(명)

③ 영어 점수가 60점 이상 70점 미만인 학생 수는

남학생: 150×0.24=36(명)

여학생: 100×0.32=32(명)

따라서 영어 점수가 60점 이상 70점 미만인 학생 수는 남학생이 여학생보다 더 많다.

- ④ 여학생의 그래프가 남학생의 그래프보다 오른쪽으로 치우쳐 있으므로 여학생의 영어 점수가 남학생의 영어 점수보다 더 높은 편이다.
- ⑤ 남학생과 여학생에 대한 두 그래프에서 계급의 크기와 상대도수의 총합이 각각 같으므로 그래프와 가로축으 로 둘러싸인 부분의 넓이는 서로 같다.